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Abstract

This study deals with the modeling of 
the basic steps of gene expression in 
biological systems. It approaches the 

problem of determining the steady-state 
variance of the messenger RNA gene 

products, through a discrete-space; 
continuous-time stochastic modeling 
based on Stochastic Petri Nets. The 

model is solved at steady-state using 
both the analytical and simulation 

approaches. The results obtained for the 
variance of gene products indicate that 
the relative speed in the different gene 
expression processes may determine 

very noisy conditions, which are likely to 
affect many cellular phenomena
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Modelando 
ruido en 

expresión de 
genes 

 Resumen

Este estudio trata sobre la 
modelización de los pasos básicos 
de la expresión de genes en los 
sistemas biológicos. Se aborda el 
problema de la determinación de la 
variabilidad de estado estacionario 
de los productos de los genes ARN 
mensajeros, a través de un espacio 
discreto, el modelado estocástico de 
tiempo continuo con base en redes 
de Petri estocásticas. El modelo se 
resuelve en el estado estacionario, 
utilizando los enfoques analíticos y de 
simulación. Los resultados obtenidos 
para la variabilidad de los productos 
de los genes, indica que la velocidad 
relativa en los diferentes procesos de 
expresión génica, puede determinar las 
condiciones muy ruidosas, afectando 
muchos fenómenos celulares

Palabras clave

Sistemas biológicos
Genes ARN mensajeros
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Gene expression is the biologi-
cal process by which informa-

tion encoded in the genome is used 
to synthesize functional molecules 
such as proteins, enzymes, ribo-
somal RNA and many other basic 
components of cellular machinery.

The basic mechanisms of gene ex-
pression are common to most life 
forms (Clancy and Brown, 2008). 
Genes in the cell nuclear DNA 
encode the structure of functio-
nal molecules in a purely digital 
way, through a 4-symbol alphabet 
whose elements are the four DNA 
nucleotides Adenine, Guanine, 
Cytosine and Thymine (A, G, C 
and T). The gene linear sequence 
of nucleotides is read by the RNA 
polymerase macromolecule, which 
makes a copy of the gene content 
as a linear sequence of nucleoti-
des to produce a molecule called 
messenger RNA (mRNA). This 
gene expression sub-process is 
known as gene transcription, as 
the mRNA is again a string of four 
characters; it has just a slight diffe-
rence in the alphabet with respect 

1. Introduction

to DNA in that the Uracil nucleoti-
de is used to replace the Thymi-
ne in the sequence. The mRNA 
is termed messenger because 
of its ability to travel from the nu-
cleus of the cell to its cytoplasm. 
In eukaryotic cells, mRNA molecu-
les are exported from the nucleus 
through an extrusion process via 
the nuclear pore complexes that 
are embedded in the nuclear enve-
lope (Carmody and Wente, 2009). 
The mRNA molecules found in the 
cytoplasm get engaged by macro-
molecules called ribosomes, which 
again read the string of nucleotides. 
This sub-process is called mRNA 
translation, because the ribosome 
interprets each substring of 3 nu-
cleotides as a key to map one spe-
cific amino acid in a set of 20. Each 
mRNA molecule is commonly used 
for multiple translations. Multiple ri-
bosomes attach to the mRNA and 
concurrently read it creating more 
copies of the gene product. The 
degradation of the mRNA mole-
cule is regulated through various 
cellular mechanisms (Beelman 
and Parker, 1995). The amino acid 
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sequence resulting from mRNA 
translation is called polypeptide, 
and upon production in the cyto-
sol, it loses its linear structure by 
folding into a 3-dimensional mole-
cule (Alberts et al, 2002). This con-
formational change is regulated by 
the atomic forces among the subu-
nits of the sequence, and it is often 
assisted by molecules called cha-
perones, which ultimately determi-
nes the biochemical properties of 
the molecule. The correct three-
dimensional structure is essential 
for its function; Failure to fold into 
native structure generally produ-
ces inactive proteins, but in some 
instances misfolded proteins have 
modified or toxic functionality, as it 
happens for instance in the Creutz-
feldt-Jakob disease (Chiti and Do-
bson, 2006).

The few processes outlined abo-
ve provide a very simplified view 
of the biological phenomena oc-
curring in gene expression. In this 
paper, we just sketch the basic 
features of a complex, regulated 
production process that uses a 
single copy template information 
(the gene), to generate a number 
of active products used by the cell 
to implement its functions. Regula-
tion of the sub-processes is exer-
ted a multiple steps in the process. 
For instance, the binding of RNA 
polymerase to DNA (the initiation 

step in gene transcription), is regu-
lated by the availability of various 
classes of molecules called trans-
cription factors. Each gene has its 
specific transcription factors, which 
are the product of the expression 
of other genes. 

A fascinating aspect of cell biolo-
gy is the achievement of a nearly 
deterministic system response 
obtained as a result of inherently 
noisy processes. In a matter of few 
minutes, all cells in a tissue exhibit 
nearly identical behaviors in terms 
of their gene expression when res-
ponding to the same stimuli. This 
is even more surprising if one con-
siders that at the level of gene ex-
pression the response is determi-
ned by the biochemical interaction 
of a limited number of molecules (1 
gene, few tens of mRNA copies) 
and thus large number effects that 
mask noisy behaviors are much 
less effective than in other biologi-
cal processes (for instance meta-
bolism) where thousands of copies 
of the same reactions happen per 
millisecond. 

The objective of this work is to 
build simple quantitative models 
of the gene expression process 
to evaluate the sources and the 
propagation of noise along some 
basic steps of gene transcription. 
In this document we consider di-
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fferent models of a gene regulation 
scheme based on the availability of 
transcription factors, and we solve 
the models in order to make pre-
dictions about the steady-state le-
vels of the final mRNA product of 
the gene. 

The paper is organized as follows: 
in Section 2, we provide a des-
cription of the basic mechanisms of 
gene expression that will be consi-
dered in this study. We do it by des-
cribing informal preliminary models 
of the system, in the style that is 
usually adopted by biologists. Then, 

in Section 3, we translate these in-
formal models into a formal model 
with fixed semantics, specifically a 
Stochastic Petri Net. In Section 4 we 
conduct an analytical study of the 
mode, by determining some avera-
ge measures of the steady-state po-
pulation and two asymptotic results 
for the gene product noise . In Sec-
tion 5, which contains a prospective 
analysis of results, we formulate a 
conjecture about the noise levels in 
the system, which is supported by 
preliminary simulation results. This 
same section provides some hints 
for future research on the topic.
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Iet us consider a gene whose 
transcription rate is dependent 

on the abundance of a transcription 
factor. A production/degradation 
process determines the concentra-
tion of the transcription factor, and 
this process is assumed to be an in-
dependent driver of the gene trans-
cription. We suppose molecules of 
a species TF (Transcription Factor) 
are produced by a zero order pro-
cess (that is, independent of the 
amount of TF already present) at a 
rate given by α following a process 
which details are not modeled here. 
The TF molecules are degraded by 
a process that we model as a sim-
ple first order process (that is, who-
se total speed or rate is proportional 
to the amount of TF present in the 
system) of rate β. These modeling 
abstractions can be represented in 
the language of chemical reactions, 
as follows:

Ø   α   T 

TF   β   Ø  

The first reaction is modeling the 
fact that TF molecules are entering 
the system at rate α from the out-
side of it (the environment, repre-
sented by the empty set symbol Ø), 
whereas the second reaction mo-
dels the destruction of TF molecu-
les at rate α and hence their return 
to the model environment. 

The gene transcription process 
is modulated (regulated) by the 
availability of TF molecules. Each 
mRNA molecule is produced from 
the environment of the system, i.e. 
the cell, with a rate that is proportio-
nal to a rate constant λ (the speed) 
of transcription and to the number 
of TF molecules. Each mRNA mole-
cule in the system is degraded at a 
rate μ, and to hence the total mRNA 
degradation process is a first order 
process operating at rate μ. In the 
language of chemical reactions, 
these behaviors of the system are 
encoded as follows:

TF+Gene  λ   TF+Gene+ mRNA
 
mRNA   ע   Ø
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The first reaction above is repre-
senting the gene transcription 
process. A gene molecule (Gene, 
which exists in a single instance) 
engages a TF molecule in a reac-
tion that as a result produces a new 
mRNA molecule, and gives back a 
free TF molecule and the unaltered 
Gene. The second reaction models 
the degradation of the mRNA mo-
lecules.

This kind of modeling based on 
chemical reactions is quite common 
in biology: it is detailed enough as 
far as the reactants (species at the 
left in a reaction) and products (spe-
cies at the right in a reaction) of re-
actions are considered, and allows 
an easy representation of reaction 
stoichiometry (multiplicity of reac-
tants and products in reactions). 

A graphical representation of this 
system is provided in Figure 1. 
This diagrammatic representation 

of the model is based on the same 
information used to define the 
chemical reactions, but it slightly 
moves the focus of the modeling, 
by abstracting reactants that do 
not change their state. Thus, the 
mRNA production process is repre-
sented in the diagram by abstrac-
ting the Gene molecule, in which is 
not affected by the reaction itself. 
The TF participation in the reac-
tion is represented by the influen-
ce arrow, which indicates that the 
rate of mRNA production depends 
(in some way) on the abundance of 
TF molecules.

It is worthwhile observing that both 
classes of models are not formal 
and that they do not have a precise 
semantics. Therefore, to conduct 
a quantitative predictive analysis 
of the models they first need to be 
translated into an unambiguous 
formalism.

β
Ø Ø

Ø Ø

α

mRNA

TF

λ μ

Figure 1. A graphical model of a regulated synthesis reaction

Source. by the author.
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Here, we consider a stochastic 
model of the system, and in 

particular, we assume that the oc-
currence times of all reaction events 
follow a negative exponential distri-
bution, as considered in Gillespie’s 
model of stochastic chemical kine-
tics (Gillespie, 1977). 

We can encode the model into a Sto-
chastic Petri Net (SPN), as shown in 
Figure 2. For a short introduction to 
the use of SPNs for biological mo-
deling, see (Mura, 2010). Each bio-
chemical event in the system is mo-
deled through a transition in the net 
(the bar), and each variable is enco-
ded as a discrete number of tokens 
contained in a place (the circle) of 

the net. The model contains four 
transitions: TF_synt and TF_deg 
model the synthesis and degrada-
tion of TF molecules, respectively, 
mRNA_synt and mRNA_deg model 
the synthesis and degradation of the 
mRNA. The arcs in the net show the 
flow of tokens as a result of transi-
tions firing (occurrence of the asso-
ciated events). For instance, each 
firing of TF_synt will add one token 
to the TF place and each firing of 
TF_deg will remove one token from 
that same place. The arcs that go 
from the TF place to the mRNA pla-
ce, model the regulation effect exer-
ted by the transition of the TF factor 
on the mRNA synthesis. The mRNA 
is produced at a rate that depends 

Figure 2. An SPN model for the gene expressions reactions

βα

TF_synt

TF TF

TF mRN

mRNA_synt mRNA mRNA_deg

TF_deg

λ μ

Source. by the author.
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on the number of TF molecules, but 
the mRNA synthesis does not affect 
the number of TF molecules. The-
refore, the transition of mRNA_synt 
removes and puts back one token in 
the TF place.

To compute the steady-state value of 
the number of TF and mRNA tokens 
in the SPN model, we first notice that 
the steady-state distribution of the 
sub-model of the TF synthesis and 
degradation follows a Poisson distri-
bution of parameter ρ=α/β . In other 
words, if X1 is the number of TF mo-
lecules at steady-state, the following 
equation holds for the probability of 
X1 being equal to m:

                    

The value of the steady-state 
average TF is then easily determined 
from the distribution, and in 
particular from the results to be 
equal to E[X1]=ρ. The steady-state 
distribution of the number of mRNA 
molecules, which we denote by X2, is 
dependent upon the process of the 
TF molecules variation. However, its 
average production rate is known to 
be equal to λE[X1] and therefore by 
the application of Little’s law (Little, 
1961), we get for the equilibrium that 
E[X2]=λE[X1]/µ.

P [X1=m] =         e−ρ,         m=0,1,2,…
pm

m!



160

N
úm

er
o 

1/
U

ni
ve

rs
id

ad
 E

A
N

/ F
ac

ul
ta

d 
de

 In
ge

ni
er

ía
/2

01
3 4. Noise analysis

It is important to notice that in 
the SPN model the steady-state 

average value only depends on 
the ratio between the synthesis 
and degradation processes, and is 
therefore insensitive to any simul-
taneous scaling of the two parame-
ters.

We shall now look at the noise in 
the population of species, expres-
sed as their variance. The steady-
state variance VAR[X1] of the TF 
sub-model is also known from the 
poisson distribution, and takes the 
same value as the mean, that is 
VAR[1]=ρ. The steady-state va-
riance VAR[X2] of the mRNA popu-
lation is however unknown.

In this section we shall initiate a 
characterization of VAR[X2] as a 
function of the driving TF popula-
tion statistics. As we mentioned, 
the steady-state distribution of TF 
(and thus its steady-state average 
and variance, as well as any hig-
her moment) is insensitive to the 
simultaneous scaling of the two 
parameters α and β defining the 
model. The same applies to the 
average value of the mRNA E[X2]. 

However, VAR[X2] has a depen-
dence on the specific value of any 
scaling factor k>0, such that ρ=(αk) 
⁄ (βk). Informally, the scaling factor 
k defines the speed of variation of 
the TF process, and the variance 
of the mRNA production process 
is influenced by that speed. In the 
following, we shall demonstrate 
two asymptotic values for VAR[X2], 
specifically the following ones:

where for the sake of conciseness 
we denote φ=λ/μ. 

Theorem 1. When the rates of the 
TF synthesis and degradation pro-
cess approach infinity, the varian-
ce of the number of mRNA approa-
ches ρφ.

When k→∞, we expect the number 
of TF to quickly move across the 
support values of the distribution 
before any two consecutive mRNA 
synthesis events. This is as to say 
that, in each state with a given 
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To close the last summation, we 
recall that the summation

is the generating function for the 
Bell polynomial of grade n in the 
variable x, which we denote by 
Bn(x). Therefore, we have the fo-
llowing equality:

Thus, we can finally write the fo-
llowing expression for the probabi-
lity distribution of X2:

For the sake of clarity let us rewrite 
the last expression as follows:

Where θ=e-ρ(1-e-φ) and σ=e-φρ. From 
the steady-state distribution we 
can compute the probability gene-
rating function, as follows:

Because the following property 
holds of the Bell polynomials,

number of mRNA molecules, the 
next mRNA molecule is synthesi-
zed at a rate given by the following 
average:

Thus, in the limit for k→∞ the distri-
bution of X2 is Poisson of parame-
ter λρ/μ=ρφ, with an average value 
(as already anticipated) given by 
ρφ and a variance again equal to 
ρφ. 

Theorem 2. When the rates of the 
TF synthesis and degradation pro-
cess approach zero, the variance 
of the number of mRNA approa-
ches ρφ(φ+1).

Consider the distribution of X2, which 
by applying the total probability law 
can be expressed as follows:

Assume now that X2 is much fas-
ter than X1, which is the case when 
k→0+, so that X2 goes quickly to its 
steady-state distribution, before 
any change in the number of TF 
molecules. Under this assumption, 
the distribution of X2 conditioned 
to the event X1=m is known to be 
Poisson, with parameter mφ. The-
refore:
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recovering again the already 
known result that the steady-state 
average value of X2 is indeed in-
dependent of the driving process 
speed. To compute the variance of 
X2, we use the following equality in-
volving the first and second deriva-
tives of the probability generating 
function:

and we finally get:

We can rewrite the probability ge-
nerating function as follows:

With some algebraic manipulations 
we further get:

The first moment of the distribution 
can be obtained from the first deri-
vative of the probability generating 
function, as follows:
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5. Conclusions and speculations

We showed in the previous 
section that the speed of the 

TF synthesis and degradation pro-
cesses has an effect on the varian-
ce of gene products. This is quite 
an interesting result, because the 
noise in the population of species 
may have profound effects on the 
evolution of living systems. As an 
example, consider the cell cycle 
process, which ordered process 
is ruled by the level of concentra-
tion of cyclins (Csikász-Nagy and 
Mura, 2010). 

A discrete stochastic modeling of 
the system allowed the identifica-
tion of an interesting interaction 
effect between process speeds. 
This effect would be totally invisi-
ble in any continuous deterministic 
model. 

We speculate that the two asymp-
totic values computed for the va-
riance of the mRNA gene product 
establish indeed bounds for the 
noise. More specifically, we make 
the conjecture that the variance 
of X2 is a monotonic decreasing 
function of k. We show the results 

of simulation study supporting this 
conjecture. Figure 3 depicts the 
average variance of X2, the num-
ber of mRNA gene products, in an 
simulation experiment where = 
0.05 and β= 0.01, which turns out 
in an average number of TF mo-
lecules X1=5, λ= k•5, μ= k•1, which 
results in an average number of 
mRNA molecules of X2=25. In the 
simulations, the parameter k va-
ries in the range [0.005,5000], thus 
causing the exploration of a large 
range of ratios between the rela-
tive speeds of the TF and mRNA 
relative processes of synthesis 
and degradation. The simulations 
were conducted using the Möbius 
tool (Graham et al., 2001). We 
used 20,000 runs of simulation 
for each sampling value of k, and 
we computed confidence intervals 
at 98% confidence levels for two 
measures: the average number of 
mRNA molecule, which we used as 
a control measure to ascertain the 
correctness and accuracy of simu-
lation results, and the variance of 
the mRNA, the measure objective 
of the study.
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The simulation results in Figure 
3 show that the average number 
of mRNA molecules X2, the black 
straight line, is not affected by the 
variations of the scaling factor and 
constantly takes its theoretically 
expected value of 25.

On the other hand, the variance of 
X2 is monotonically decreasing with 
k, as conjectured. It achieves its 
maximum value for values of k that 
tend to zero, and the simulated 
maximum value is exactly the theo-
retical one VAR[X2 ]=ρφ(φ+1)=150. 
The simulated minimum value is 
achieved for k that goes to infinity 
and again, it perfectly matches the 
theoretical value stated in Theo-
rem 1, VAR[X2]=ρφ=25. Notice that 
confidence intervals are not repor-
ted in Figure 3, as they are within 
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Figure 3. simulated varience of the mRNA steady-state population. The 
straight line is used as a control of simulation accuracy, and provides the 
average steady-state number of mRNA molecules

source. By the authors

1% of the estimated measure and 
therefore too small to be graphica-
lly appreciated.

These results support the conjec-
ture. We intend to carry on with 
this study along two different di-
rections: the first one is to prove 
the conjecture analytically, and the 
second one is to explore the effect 
that the variance of the mRNA 
gene products has on the further 
steps of the gene expression pro-
cess, specifically on the translation 
and on the average number of final 
gene products.
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