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On Modeling Approaches for the Predictive 
Simulation of Living Systems Dynamics

Ivan Mura*

Resumen

Este artículo se propone presentar dos de los principales enfoques que 
están disponibles hoy en día para modelar y simular la evolución dinámica 
de sistemas vivos: el modelo determinístico continuo, que es dictado por 
los sistemas de ecuaciones diferenciales ordinarias, y el estocástico 
discreto, que encuentra su base en el algoritmo de simulación estocástica 
propuesto por Gillespie en 1976. El objetivo de esta comparación es 
proporcionar la información necesaria para apoyar la selección de un 
enfoque de modelaje, basado en un conjunto de criterios verificables. Para 
alcanzar este objetivo, se analizan los fundamentos de la modelación, se 
propone un ejemplo de modelado para un sistema de vida simple y se 
discuten las principales ventajas y desventajas de cada enfoque.
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Modelling approaches for the predictive 
simulation

of dynamic living systems

abstRact

This research paper describes two main approaches that are currently 
available for modelling and simulating the evolution of dynamic living 
systems, namely the continuous-deterministic one, which is rendered by 
systems of ordinary differential equations and the discrete-stochastic one, 
which bases on the Stochastic simulation algorithm proposed by Gillespie in 
1976. The aim of this comparison is to provide the necessary information to 
support the selection of a modelling approach, focusing on a set of verifiable 
criteria. For this reason, we review the rationale approach of modelling, 
proposing a modelling sample  for a single living system and discussing the 
main advantages and drawbacks of each approach. 
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À propos des modèles de simulation préventive 
de la dynamique 

des systèmes vivants  

Résumé 

Cet article présente les deux principales approches actuellement disponibles 
en termes de modélisation et  simulation de l’évolution dynamique des 
systèmes vivants. Il s’agit du modèle continuum-déterministe qui rend 
compte des systèmes d’équations différentielles et du modèle discret-
stochastiques qui trouve son fondement dans l’algorithme de simulation 
stochastique proposé par Gillespie en 1976. L’objectif de cette comparaison 
est de fournir l’information nécessaire permettant la sélection d’une 
approche de modélisation basée sur un ensemble de critères vérifiables. 
Pour atteindre cet objectif, nous examinerons la rationalité de la modélisation 
avant de proposer un exemple de modélisation d’un système vivant simple 
pour finalement analyser les principaux avantages et inconvénients de ces 
approches.

Mots-clés 
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Sobre abordagens de modelagem para a 
simulação preditiva da dinâmica de 

sistemas vivos

Resumo

Este artigo objetiva apresentar dois modelos principais que estão atualmente 
disponíveis para modelar e simular a evolução dinâmica de sistemas vivos, 
aquele conhecido como continuo-determinístico, que está sujeito por 
sistemas de equações diferenciais ordinárias, e o discreto-estocástico, que 
está baseado no algoritmo de simulação estocástica proposto por Gillespie 
em 1976. Esta comparação objetiva fornecer a informação necessária 
para sustentar a escolha de uma abordagem de modelado, baseado em 
um conjunto de critérios verificáveis. Para atingir este objetivo, é feita uma 
revisão da lógica da modelagem, propõe-se um exemplo de modelagem 
para um sistema vivo simples e discutem-se as principais vantagens e 
desvantagens de cada abordagem. 

PalavRas-chave

Modelagem, Simulação, Sistemas Vivos, Simulação Estocástica.
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1. Introducción 

The term model is perhaps one of the most commonly used words 
in science, and it takes a different meaning depending on the realm 
and the context that is being used. Even when we limit ourselves 

within the boundaries of biology, the science of living systems, the term 
model recalls many different meanings. For instance, the EME iron binding 
domain of hemoglobin is an example of a protein tertiary structure model; 
the common budding yeast Saccharomyces cerevisiae is a model, same 
as many other organisms that were selected as sample subjects of study 
for other species that are more difficult to study directly; the mechanism 
of action of a drug, for instance aspirin, is a model for the action of non-
steroidal anti-inflammatory compounds. 

Therefore, it is important to clarify what would be the intended meaning of the 
word model in our context. We consider a model to be a generalization and 
abstraction of some phenomenon or system, used to convey qualitative and/
or quantitative information about the phenomenon or system it represents. 
To be more precise, in this paper we will limit ourselves to consider those 
models of living systems which possess the following properties:

• They include both qualitative and quantitative aspects of living systems.

• They can be used to determine the dynamical evolution of a phenomenon/
system over time, starting from a known condition (initial state). 

• They are amenable to simulation on a computer, which implies in computer-
science terms that they have a single semantics, i.e. an unambiguous 
meaning. 

One example of such a model would be the Lotka-Volterra model for the 
time dependent dynamical evolution of the preys and predators populations 
(Cooke et al., 1981). 
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Modeling biological systems is a significant task of systems biology (Kitano, 
2002). Computational systems biology aims to develop and use efficient 
algorithms, data structures, and visualization and communication tools, with 
the goal of modeling biological systems and study their evolution through 
computation. The advantage of using computational models is manifold:

• Models can be built at different levels of abstraction, allowing to focus on 
the real object of interest of the study or investigation.

• Models permit to explore behaviors that would otherwise be difficult or 
impossible to observe.

• Model based studies consume much less resources, time and money 
than wet-lab experiments. 

Of course, the points above do not mean that models should replace biological 
experimentation; rather, they are providing an effective companion tool that 
(a) complements and assists biology investigation through the analysis 
of what-if scenarios, (b) sustains/disproves experimental hypotheses, (c) 
drives experimental design. 

Having said that, we come to the core of this paper, whose objective is to 
present and compare two main approaches to the modeling and simulation 
of living systems, namely the continuous deterministic and the discrete 
stochastic ones. There is an on-going debate on merits and drawback 
of the two in the systems biology community, quite often biased by the 
subjective preferences that are rooted in the background of the modelers; 
on the other hand, biologists that approach modeling are usually much more 
pragmatic and ready to experiment with both the continuous-deterministic 
and discrete-stochastic tools and methodology (Twycross et al., 2010), a 
strategy that can provide very reach predictions about system behavior 
(Mura and Csikász-Nagy, 2008). 

 This paper aims at providing the guideline information that should be used 
when selecting one modeling method. We present throughout the paper an 
example of modeling of a simple living system, from which we gather our 
conclusion about the important criteria that should guide a model selection, 
which very shortly are: the life-cycle of the model, i.e. whether a reuse/
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extension is planned, the available experimental data, the relevance of 
noise for system behavior, the available time, and the measures of interest. 

The rest of this paper is organized as follows: section 2 presents a very 
concise view of the abstraction processes required to extrapolate from 
the wealth of data that is available about living systems, and applies it to 
a simple case study example of predator-prey system. In Section 3 and 
4 we introduce the continuous-deterministic and the discrete-stochastic 
modeling approaches, respectively, and we apply them to our case of study. 
Section 5 is devoted to the comparison of the methods. The results of such 
comparison are distilled in Section 6, which states the guidelines for model 
selection. 

2. A modeling view of living 
systems

We define in this section the elements that are necessary to 
define a model of a living system, according to the specific 
definition of model we gave above. The kind of models we are 

interested in have the nice property of accommodating the most disparate 
levels of abstraction, which allows covering the wide range of spatial and 
temporal scales encompassed by biological investigation, from molecules 
to ecosystems. 

When building a computational model amenable to simulation, we will be 
basically dealing with two types of information: 

• Structural information, which includes the entities of the system, their 
evolution and interaction possibilities.

• Quantitative information, which provides the details about the speed with 
which the entities of the living system change their state and interact, as 
well as the multiplicity of the entities in the initial state of the system. 
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This information is to be distilled according to the objective of the modeling 
that defines the possible abstractions in which parts and behaviors are not 
relevant, and complete the projection from the total amount of information 
available. This point of detail is quite important when dealing with living 
systems, for which huge amounts of data are being generated.

2.1 Structural information
To better understand what we mean with the structural information of a 
model, we can imagine visualizing it as a network, where nodes are entities 
and arcs are relationships representing changes and interactions. Much 
of biology is described and explained through qualitative networks, often 
termed cartoons, where entities and their transformations/interactions are 
depicted in a graphical form. For instance, we show in Figure 1 a cartoon 
network for the EGFR signaling pathway. This network includes entities such 
as the EGF, EGFR, PI3-K and various other molecular species, interactions 
(in this case mainly phosphorylations) represented by arrows and finally 
compartments such as the extracellular space, membrane, cytosol and 
nucleus, specifying the localization of entities. 

Figure 1. EGFR signaling pathway cartoon network

Source. Wikimedia COMMONS.
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The example in Figure 1 provides a good idea of the type of information we 
expect to collect for defining the structural part of a model. The following 
list provides a better description of what needs to be extracted from the 
biological knowledge available: 

•  The list of entities participating in the phenomenon or system to 
be modeled. They can be molecular species such as proteins and 
enzymes, macromolecules such as genes and ribosomes, or even 
animals when we are dealing with food webs or entire ecosystems. 
When an entity may appear in different states or configurations, and 
they are relevant to the evolution of the system, we need to include 
all of them in the list. For instance, a protein may exist in multiple 
states of ubiquitination: if these species possess different levels of 
activity, they should be considered as different entities and therefore 
be included in the model. 

• The compartments or physical locations where the entities can exist or 
move to. Molecules may or may not have the ability to cross membranes, 
so animals may move within different areas of the environment. 

• The possible changes in the state, activity, availability or location of 
the entities. For example, a molecule can be degraded and therefore 
disappear from the system, or may move itself from one compartment 
to an adjacent one. 

• The possible interactions between entities, i.e. those changes that 
result from the physical contact of two entities, such as molecular 
complexation, mating or killing of a prey by a predator. 

To make a simple example, if we wanted to gather the structural information 
of a well-known prey-predator model (again, Lotka-Volterra), we would get 
the following: 

•  There are just two entities: prey and predator.
•  There is a single physical space: the savanna environment.
•  A prey reproduces with consuming the resources of the environment; 

a predator dies. 
• A predator eats a prey and reproduces. 
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2.2 Quantitative information
The following list describes the quantitative details that need to be extracted 
to complement the structural information: 

• The multiplicity or abundance of each entity listed in the structural 
part at the initial time (it may be 0 for some). This information defines 
the initial state of the model. 

• The size (volumes and areas) of the compartments or physical 
spaces. 

• The speed of the changes in the state, activity and availability, or 
location of the entities. In this case, how much does it take for a given 
amount of a molecule to be synthesized or degraded? How long does 
an animal survive? 

• The frequency with which entities encounter each other and interact, 
obviously in a given physical space. 

To continue with the prey-predator example we would require the following 
additional information: 

• The density or number of preys and predators at time zero.

• The area where the preys and predators live and move.
 
• The rate at which preys reproduce and the time a predator survives in 

the environment.

• The rate at which predators eat preys and reproduce. 

These two types of information are sufficient to build a model that is amenable 
to simulation, and that can predict the evolution of the prey-predator system 
over time. We will be using this specific example in the next two sections, 
when detailing the two modeling approaches we deal with in this paper. 
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3. The continuousdeterministic 
modeling approach

The continuous-deterministic approach to the modeling of living 
systems finds its basis in the continuous approximation of the 
multiplicity of the entities. When dealing with the high numbers 

typical of molecular counts, it is quite obvious to approximate discrete 
quantities with continuous variables. This comes even more naturally, given 
that experimental measurements about molecule abundances are normally 
taken in form of concentrations, i.e. continuous numbers. 

 In a continuous- deterministic model, the abundance of entities is represented 
by continuous variables. The changes that affect such abundance are 
represented in terms of the speed of variation of the variable, i.e. its derivative. 
Therefore, a continuous-deterministic model is usually a set of ordinary 
differential equations (ODEs). The name “deterministic” comes from the fact 
that the behavior of the model over-time, that is the solution of the ODEs, is 
totally determined by the initial state and the equations  itselfthemselves. No 
stochastic fluctuations are considered, and any prediction of the model is 
perfectly reproducible (Ellner and Guckeheimer, 2006).

To give a practical example of how a continuous deterministic model would 
be built, we consider again in the following the predator prey example. There 
will be exactly two time-dependent continuous variables, one for each of the 
entities of the system. Let us denote such variables with prey and pred. The 
units of measure of the variables would be densities, i.e. number of animals 
divided by area.  

Changes affecting such variables are represented as variations over time. 
The changes of variable prey are determined by two distinct phenomena: 

•   Births, which increase the variable, and occur with a rate that is 
proportional to the current size of the population.
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•  Deaths, which are always caused by predators, and are therefore 
proportional to the populations of preys and predators.

 
In a differential equation, this looks like this: prey’=α∙prey- β∙prey∙pred, 
prey^’=α∙prey- β∙prey∙pred where α and β are the rates at which the density 
changes because of the births and the deaths, respectively. 

Similarly, we can write a differential equation for the evolution of the variable 
pred, as follows: pred’=γ∙prey∙pred- δ∙pred, pred^’=γ∙prey∙pred-δ∙pred 
where the first term accounts for the positive variations of density due to 
reproduction and the second one for the negative variation due to predators 
death. The γ and δ are again the rates at which the density changes because 
of the births and the deaths, respectively. The structural part of the model is 
represented by the system of the two coupled ODEs.

The quantitative part of the model assigns an initial state to the ODE system, 
and provides the values of the rates α, β, γ and δ. For instance, if the initial 
densities were 5/km2 and 0.1/km2 for preys and predators, and the following 
values of the rates were used1.

α=0.2/day, β=0.02/(day*density), γ=0.02/(day*density), δ=0.01/day

Then, the final model would be as follows:

       prey’=0.2 ∙ prey-0.2 ∙ prey ∙ pred
       pred’=0.2 ∙ prey ∙ pred-0.2 ∙ pred
                         prey(0)=5
                         prey(0)=0.1

____________
1 Notice the different units of measure for the various rates, depending on whether the term they 
are used in is of the first or second order.
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A simulation of the model obtained through numerical integration would 
provide the time-dependent evolution of the variables shown in Source. It is 
interesting to notice the oscillations that result from this model simulation, 
which predict the fluctuations in the populations of preys and predators 
observed in nature. Oscillatory dynamical equilibriaequilibriums are quite 
commonly encountered in living systems dynamics. 

Figure 2: Simulation of the predator-prey continuous-deterministic model. 
Time (days) is on the horizontal axis,  density is on the vertical axis

 

Source. Simulation realized with the WinPP software package
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In 1976, a paperA document presented by Daniel T. Gillespie (Gillespie, 
1977) proposed a novel computational approach to effectively analyze the 
time behavior of living systems through a discrete-stochastic approach. 

That paper provided an easy to implement algorithm for simulating the 
evolution of a system together with a theoretical justification of its applicability, 
grounded on statistical mechanics, of its applicability. The success of 
Gillespie’s method for the study of biochemical systems dynamics is well 
demonstrated by the plethora of studies, papers and computational tools 
based on it that have appeared since the its original publication. 

The main reasons for this widespread acceptance stem from the simplicity of 
the proposed algorithmic approach, which easily lends itself to straightforward 
implementations (Cao and Samuels, 2009), and from the clear link that is 
maintained with the intuitive descriptive language of chemical reactions 
(which also suits biochemistry). In fact, Gillespie’s algorithm, called Stochastic 
Simulation Algorithm (SSA), can be seen as a formalization of the common 
intuitive understanding of how a chemical or a biochemical system described 
through chemical reactions would evolve over time. 

Discreteness is at the core of the SSA. The very true nature of almost all 
the entities of living systems is discrete. Genes, proteins, cellules, and 
organisms can be counted as discrete numbers. Stochasticity is also 
inherent to the living system behavior; for instancein fact, it arises from the 
likelihood that molecules collide with each other due to their random motion 
in a medium, or that an animal dies or survives an encounter with a predator. 
The most important contribution of Gillespie was to reduce the complexity 
of an analytical treatment of discreteness and stochasticity, so that it can 
nicely fit into the well-known theory of Markov processes (Gillespie, 1992). 

4.  The continuous-
deterministic modeling 

approach
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When approaching the discrete stochastic modeling of a system, we 
introduce a discrete variable for each entity. Therefore, for our predator-
prey modeling example we would have two variables PREY and PRED 
(capital letters used not to confuse them with the variables of the continuous-
deterministic model), which can take any value in the set of natural numbers. 
The initial values of these variables can be determined from the initial 
density value. We assumed that 5/km2 and 0.1/km2 are the initial values of 
for variables PREY and PRED, respectively. To convert these values into 
discrete numbers, we multiply by the area of the surface we intend to model, 
say 500km2, getting the initial values PREY(0)=2500 and PREY(0)=50. 

The other structural information can be rendered with various tools that 
support discrete-stochastic modeling. We consider in the following a very 
common and practical one, called Petri petri Nets nets (Mura, 2010). Petri 
Nets nets are a graphical modeling tools consisting of four elements: 

• Named places, represented as white circles, which model entities.

• Tokens, represented as small dots, contained inside places, modeling 
the state or number of an entity.

• Named transitions, represented as empty bars, which model events.

• Arcs, which only link places to transitions and transitions to places, 
and model the flow of tokens in the net. Arcs have a weight (usually 1, 
not shown), to specify the number of tokens that flow through them. 

 
A possible encoding of the structural information of the predator-prey system 
in a Petri petri Net net is shown in Figure 3. The number of tokens contained 
in places P_PREY and P_PRED represents the value of variables PREY 
and PRED of the model. Transition t_birth models the event “birth of a prey”, 
and adds one token to the place P_PREY. Transition t_eat_repr models the 
two events (a)“a predator kills a prey” and (b)“a predator reproduces”. It 
subtracts one token from place P_PRED and one from place P_PREY, and 
adds two tokens (notice the arc weight) to the place P_PRED. Therefore, 
the net balance of the flows associated with transition t_eat_repr models 
the removal of one prey and the birth of a predator. Transition t_die models 
the death of one predator, by removing one token from place P_PRED. 
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Figure 3: Petri Net of the predator-prey system (structural information)

    

Source. by the author

The quantitative information of the system about the speed and frequency 
of change and interactions events is included into the Petri petri Net net 
model in the transition rate specification. The event associated with transition 
t_birth occurs 0.2 times per day (the same value we used in the continuous-
deterministic model). This value is now interpreted as the rate of a negative 
exponential distribution, and defines the probability density function of the 
events that add tokens into place P_PREY. Similarly, we define the rates for 
the other two transitions. 

The complete Petri petri Net net model can be simulated by using one of the 
many tools available. We report in Figure 4 the results of two simulation runs, 
executed by the Möbius software package (Clart et al., 2001). We show 
two simulation runs to demonstrate two different effects of stochasticity: 
first, each simulation run provides one of the possible evolutions of the 
modeled system, and second, the discrete stochastic model accounts for 
the extinction probability of extinction of thefor populations (see the right 
chartchart on the right). 



117

Ivan Mura

Figure 4. Simulation results for the discrete stochastic model

Source. By the author

5. A comparison of approaches

In this section we will compare the continuous deterministic and the 
discrete stochastic modeling approaches for the prediction of living systems 
behavior, concerning the following aspects: 

• Easiness of model creation, evaluated in terms of the time that is 
necessary to fully define the models from the biological information 
that is available.

• Understandability of the models, which we shall evaluate based on 
the closeness of the model to the standard biological representation 
of knowledge.

• Behaviors that are captured by the models referring to the quality of 
the predictions that can be made from simulation outcomes.
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• Difficulty in the analysis of simulation outcomes, evaluated as the 
complexity of simulation data post-processing required to quantify 
the measures of interest, such as averages of abundance or sizes 
of populations, periods and amplitude of oscillations, time to achieve 
equilibrium, etc. 

These set of criteria selected for the comparison does not pretend to be 
complete, rather we are focusing on the perceived experience of a modeler 
along the various phases of a modeling process. 

5.1 Model creation
As it can be deduced from the example used throughout this paper, the steps 
to extract the structural and quantitative information are pretty independent 
from the selected modeling approach. A difference exists in the quantitative 
data required, in which the continuous deterministic modeling approach that 
naturally deals with continuous variables may easily obviate the necessity 
of knowing the exact dimensions of the compartment or geographical area 
object of the modeling. On the contrary, the discrete-stochastic approach 
requires an estimation of this quantitative information to determine the 
number of molecules of species given a concentration measure, as well as 
to perform a scaling of the rates for the interactions among two entities (this 
operations scaling was omitted in the paper not to burden the treatment of 
the example with and excessive level of detail). 

The preference for an ODE based or a petri net base model is largely 
determined by the skills of the modeler. There is no difference in the time 
required to build them. The petri net modeling approach tends to hide the 
mathematical details of model formulation, and is usually easier to accept 
by beginners. 

5.2  Model understandability
Once we have a model built, we may ask ourselves how intuitive  it may be for 
a biologist who does not have a deep knowledge on the formalism we use. 
Here, we can fairly say that a petri net encoding of a model is for sure easier 
to understand, share and reuse than an ODE model. First of all, a petri net 
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represents all the events and interactions that lead to a system state change 
into separate and named graphical objects, whereas an ODE transforms 
everything into terms of a mathematical expression. Therefore, in a petri 
net a biologist can easily recover each aspect of the biological system that 
has been modeled, basically because the causality is preserved, whereas 
to perform such operations in a continuous-deterministic model requires a 
process of deconvolution of a potentially complex expression, where each 
term has to be analyzed to understand the piece of the biological system it 
relates to. 

5.3 Behaviors captured by the model
Regarding the number and quality of the predictions that can be obtained 
by the two approaches, it is quite intuitive to understand that the discrete-
stochastic one gains in the comparison. This is due to the fact that this 
modeling approach includes more information about the system, i.e. 
the discreteness and the stochasticity. The discrete nature of the model 
ensures that unfeasible states of the system with negative abundances are 
ever reached during a simulation. The stochastic characterization provides 
for the evaluation of averages, variances and whole distributions of the 
measures of interest, whereas the outcomes of a continuous-deterministic 
model only for average or mode values. In the predator-prey example we 
stated before, the inclusion of stochasticity in the model unveils a possible 
behavior of the system that passes totally unpredicted in the deterministic 
continuous approach, i.e. the possibility of population extinction. This 
occurs because the outcome of the ODE is only showing the most likely 
behavior of the system, without accounting for the unlikely events, such as 
when the predators kill all the preys. It is also important to mention that the 
outcomes of the two modeling approaches agree in terms of the most likely 
behaviors. The average period and the average amplitude of the oscillations 
computed from the simulation outcomes of the discrete-stochastic model 
are in agreement with the constant period and constant amplitude of the 
simulation outcome of the continuous-deterministic model. 
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5.4 Analysis of simulation outcomes
We consider here the process by which the simulation output is analyzed 
to obtain the information about the possible behaviors of the system. The 
predictions can be of two different types, qualitative and quantitative. 
Qualitative predictions about system behavior refer to the trends of system 
evolution, such as growth of populations or in the abundance of species, the 
existence of steady-states or oscillatory behaviors. Quantitative predictions 
refer to times to achieve equilibrium or the periods of oscillations, size of 
populations and concentrations. 

When dealing with the outcomes of a continuous-deterministic model 
simulation, all the qualitative and quantitative predictions are easily made 
through the analysis of a single simulation run. On the contrary, when the 
discrete-stochastic modeling approach is adopted, the outcomes of multiple 
runs are to be aggregated to obtain a statistically meaningful evaluation 
of systems behaviors. This applies to both qualitative and quantitative 
behaviors. In a model where the abundance of entities is limited, for 
instance when studying with genes and their immediate products such 
as mRNAs, the stochastic noise can easily mask qualitative behaviors of 
systems in every single simulation run. Hence, to understand whether a 
discrete-stochastic model is predicting the existence of a steady state, we 
need to resort to the techniques for the statistical analysis of simulation 
outputs to compute estimates of averages and variances, together with their 
confidence intervals (Kelton, 1997). Depending on the variation coefficient 
of of the measure of interest, this analysis may require the aggregation of 
the output of a considerable number of simulation runs, up to thousands 
when we are interested in rare events such as extinctions. 
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6. Conclusions

We reviewed in the previous sections the necessary steps to create models 
and to analyze the outcomes of simulations for the continuous deterministic 
and discrete stochastic approaches, in their application to the prediction of 
living systems behavior. 

 When we are confronted to the selection of a modeling approach, we should 
primarily take into consideration the purpose of the modeling, in terms of the 
measures of interest. If we are only interested in the average behavior of 
a system, the continuous deterministic is usually providing a more suitable 
means to explore system dynamics. It also has the advantage of requiring 
less time in the analysis of simulation outcomes. 

However, the characterization of the average behavior can sometimes be 
misleading, and obfuscate the real dynamics of a system, for instance when 
the measure of interest exhibits a bimodal distribution. In this case, the 
average of a measure may be quite far from any of the most likely behaviors 
of the modeled system. 

 If the objective of the modeling is the prediction of variances or distributions, 
we have to resort to the discrete stochastic modeling approach. This entails 
the necessity of gathering more data for model definition, as well as to 
spend additional time for the statistical aggregation of simulation outcomes. 
Undoubtedly, this approach can improve the level of detail of the predictions. 

Another important consideration we have to make has to do with the life-
cycle planned for the model. If we are building a standalone model that will 
hardly be reused or extended, the complexity of the mathematical treatment 
inherent to ODE will be obviated by the time savings. On the contrary, if 
the objective is to create a family of models, possibly refining or extending 
the model in a cycle of improvement, then the understandability and the 
preservation of causality that come with the discrete stochastic approach 
become of utter relevance. 
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As a conclusion, we can advocate the use of both modeling approaches, the 
continuous deterministic one as a first cut modeling tool , and the discrete 
stochastic to selectively refine the interesting model predictions. In line 
with this suggestion, various systems biology modeling tools, for instance 
COPASI (Hoopes et al., 2006), are nowadays providing the facility to specify 
the structural and quantitative modeling information and then to select in a 
second state the specific model formalism into which the modeled system 
will be represented and simulated.
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