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AbstrAct: 

This paper aims at showing the predictive modeling of living systems, 
particularly some commonly structured modeling assumptions which 
simplify the behavior of living systems. It also takes into account the 
stochastic modeling of basic gene expression mechanisms, such as 
transcription and translation, reaffirming the effect that simplifications 
have on the predictive behavior of living systems. These mechanisms rely 
on the basis of most gene expressions, signaling pathways and protein- 
protein interaction network models. This paper states that the usage of 
naïve modeling abstractions may result in predictive behaviors that are 
quite far from reality.
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el impActo de sUpUestos no explícitos 
en lAs predicciones de lAs dinámicAs de 

sistemAs vivos

resUmen 

Este artículo, tiene como objetivo mostrar el modelado predictivo de los 
sistemas vivos, en particular algunos supuestos del modelo comúnmente 
estructurado, que simplifican el comportamiento de los sistemas vivos. 
También, tiene en cuenta el modelado estocástico de los mecanismos 
básicos de expresión génica, tales como la transcripción y la traducción, 
reafirmando el efecto que tienen las simplificaciones en el comportamiento 
predictivo de los sistemas vivos. Estos mecanismos, dependen de la 
mayoría de las expresiones de genes, las vías de señalización y los 
modelos de red de interacción proteína-proteína. Este artículo, se señala 
que el uso de abstracciones de modelados ingenuos, pueden dar lugar a 
comportamientos predictivos lejanos de la realidad.

pAlAbrAs clAve

Sistemas Vivos, Modelos de Red, Comportamientos Predictivos.



Ivan Mura,

87

L’impact des hypothèses de modélisation 
sur les dynamiques prévisibles 

des systèmes vivants

résUmé

Cet article traite de la modélisation prédictive des systèmes vivants et 
en particulier de certaines hypothèses de modélisation exposant les 
simplifications du comportement des systèmes. Nous examinerons ici 
la modélisation stochastique de base des mécanismes d’expression 
tels que la transcription et la traduction, ainsi que l’effet que certaines 
simplifications peuvent produire sur le comportement prévisible des 
systèmes vivants. Ces mécanismes sont à l’origine de la plupart des 
expressions génétiques, des modèles d’interactions en réseau de type 
protéine-protéine. Nous montrerons que l’utilisation de modélisations 
simples peut entraîner des comportements prévisibles assez loin de la 
réalité.

mots clés

Modèles en réseaux, Systèmes Vivants, Prédiction des Comportements
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Impacto de suposições escondidas 
de modelagem em dinâmica predita 

de sistemas vivos

resUmo 

Este artigo abrange a modelagem preditiva de sistemas vivos, e em 
particular algumas suposições comuns de modelagem que levam a 
simplificações no comportamento dos sistemas. Será considerada 
a modelagem estocástica dos mecanismos básicos de expressão 
gênica, como transcrição e tradução, para estabelecer o efeito que as 
simplificações têm no comportamento predito de sistemas vivos. Estes 
mecanismos estão na base da maioria da expressão gênica, mostrando 
caminhos e modelos de redes de interação proteína-proteína. Mostra-
se que o uso ingênuo de abstrações de modelagem pode levar a 
comportamentos preditos que estão muito longe da realidade.

pAlAvrAs-chAve

Sistemas Vivos, Modelos de Redes, Comportamentos Preditos.
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1. Introduction

Until 1977, the discrete simulation of biochemical systems at 
molecular level was considered to be intractable, due to the 
needs of tracking the speed and position of every molecule in 

the system. Then, a paper by D.T. Gillespie (Gillespie, 1977) proposed 
a low-complexity and easy to implement discrete event simulation 
algorithm for predicting the evolution of the abundances of molecular 
species in a biochemical system. 

This algorithm came with a theoretical proof of exactness grounded 
on statistical mechanics, which precisely defined the scope of its 
applicability. Since then, Gillespie’s simulation method has been 
extensively applied, and many computational approaches and tools 
based on it have appeared (Cao and Samuels, 2009). 

The principal reasons for this success are found in the intuitiveness of the 
algorithm, which establishes a simple link with the classical description 
language of chemical reactions, and in its inherent simplicity. In fact, 
Gillespie’s algorithm for stochastic simulation proposes a method that 
follows the intuitive understanding of how a system composed of biochemical 
species that interact through relations would evolve over time. 

However, such simplicity has its own limits of applicability, and is subject 
to a precise set of assumptions, precisely described by Gillespie itself. 
These assumptions should always be confirmed or rejected, and in 
any case questioned and not taken a priori. In this respect, there is a 
myriad of examples of studies assuming the general validity of such 
assumptions without discussion. 

The objective of this paper is to explore the effects of extending the 
applicability of Gillespie’s result beyond its limits. We shall demonstrate, 
through some simple examples, that the predictions about system 
dynamics may be affected by significant errors, which may lead to 
wrong conclusions about the modeled living systems. 

The rest of this document is organized as follows. In Section 2 we outline 
the main contributions proposed by Gillespie. Section 3 discusses one 
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crucial condition that Gillespie considered for ensuring the validity 
of its stochastic modeling approach and presents cases when such 
hypothesis is not trivially satisfied, to point out where approximations 
may be introduced. The potential impact of those approximations is 
considered in Section 4. Finally, conclusions and references are 
provided in Section 5 and 6, respectively.
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2. A short Recap of 
Gillespie’s Results

In a nutshell, Gillespie proved that, under the assumptions described 
later on, the time to the next reaction event is exactly a sample 
from a random variable that has a negative exponential distribution. 

The rate of the exponential is solely determined by the abundance 
of species before the reaction occurs and by the reaction rate. This 
astonishing simple result has profound consequences: it implies 
that the evolution of molecular counts can be modeled over time by 
a homogeneous continuous-time discrete-space Markov process, a 
class of stochastic processes for which a wealth of analytical results 
and solution algorithms exist, see for instance (Norris, 1997). 

Gillespie proved that this result is valid under fairly general assumptions. 
In particular, he demonstrated that there are only three limitations 
defining its applicability: 

l The biochemical system is homogeneous in terms of concentrations, 
i.e. it is well-stirred and diffusion is very fast, which ensures the 
velocity of reactions is the same irrespectively of the position of 
the reactant molecules. 

l The system is under thermal equilibrium, which provides for the 
homogeneity of the Markov process. Note indeed that the reaction 
speed would change with temperature variations. 

l The reactions modeled are elementary, where elementary means 
that they are not hiding intermediate species. For instance, it 
would be not elementary to model an abstract reaction A→C when 
the real reaction has indeed an intermediate species B and is in 
fact A→B→C. The elementariness is required to ensure reaction 
times are distributed as negative exponential random variables. 
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All the three conditions above are required for Gillespie’s results to be 
applicable, but very rarely their validity is checked. More often, they 
are assumed to be true. The only condition that is easy to verify is 
number 2), because temperature stability is ensured in many biological 
systems of interest at the molecular level, and furthermore this situation 
can be easily replicated in experimental conditions.

As for condition 1), diffusion has been proven to be very efficient even 
in the densely crowded medium of the intracellular spaces. However, 
homogeneity is obviously violated inside different cellular compartments, 
which are structural means the cell employs to provide for distinct 
concentrations of biochemical species in different places. However, 
this is not posing operative limitations to the applicability of Gillespie’s 
result, because it is possible to model cellular compartments and to 
add shuttling reactions between them to represent inter-compartment 
diffusion reactions. 

The major problems are in fact related with the verification of condition 
3), which is usually not taken into consideration. We shall see in the 
next section what it means in terms of models to assume this condition 
is verified when indeed it is not.
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3. Elementary and 
non-elementary Reactions

Following the definition stated above, an elementary reaction is one 
that does not abstract any intermediate species. This apparently 
simple condition is in fact not obvious to verify. For instance, consider 

a bimolecular reaction of the form A+B→C, whereby two reactants are 
used to produce a third species. There may be multiple reasons for which 
this reaction may indeed not be elementary. We list here some of them: 

l There is an unknown species X that is participating in the reaction, for 
instance an enzyme that catalyzes it, so that the actual reaction has 
the form A+B+X→X+C. Now, this latter reaction is not an elementary 
one and violates condition 3) for Gillespie’s result applicability. It is 
indeed easy to understand that the probability of 3 species meeting 
at random in the cellular medium is practically zero. This is a very 
common modeling risk.

l There is an unknown species Y that forms as an intermediate before 
C is formed, so the reaction is actually a sequence of reactions, of the 
form A+B→Y, Y→C. Species Y may be a short-lived one and therefore 
very difficult (or impossible) to detect by experimental means. 

l The same reaction may happen with and without a catalyzer enzyme, 
so we may have, in a concurrent fashion, A+B+X→X+C, A+B→C, 
where the first reaction would be faster than the second one. 

In all of the cases above, a naive modeling in the form A+B→C turns out in 
a modeling error. Let us now understand where the error is coming from. If 
we assume the reaction is elementary, we conclude from Gillespie’s result 
that the time to the next occurrence of the reaction is an exponentially 
distributed random variable, and therefore we are making a very precise 
modeling choice about its probability distribution. Suppose we only have 
one molecule of A and one of B, and that we know, from experimental 
measurements, that in a given medium or living system, the reaction 
between A and B happens at a rate λ=1 (measured in unit of time-1). 
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1+ =

If the reaction is elementary, it is correct to assume that λ is the rate 
of a negatively distributed exponential random variable. Therefore, the 
expected time to the occurrence of the reaction is equal to λ-1, and the 
distribution of the time to the occurrence of the reaction has a probability 
density function λe-λt, t >0, which is graphically shown in Figure 1. 

Figure 1. The probability density function of the time to the occurrence of the 
reaction. Time is on the horizontal axis, the density value on the vertical one. 
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Source. Developed by the author.

However, suppose now that the reaction is not elementary, but it is of 
the form A+B→Y, Y→C. Also, suppose that these two reactions are both 
elementary, and that they happen with rates λ1 and λ2, respectively. We 
want the average time of occurrence of the overall reaction A+B→Y, Y→C 
to be the same as the average time of occurrence of the elementary one, 
therefore the following equality must hold: 

 1 1 1

 λ1 λ2 λ   

The time to the occurrence of the production of the molecule of C is now a 
random variable that is the sum of two negatively exponential distributed 
random variables. The sum of two exponential random variables of rates 
λ1 and λ2 follows a distribution known as hypo-exponential or generalized 
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Erlang (Amari and Misra, 1997), whose probability density function is as 
follows: 

To quantify the modeling error that one may commit when assuming 
the elementariness of reaction A+B→C whereas it consists of the two 
reactions A+B→Y, Y→C, we compare in Figure 2 the distributions of the 
time to the occurrence of the production of C, in the two cases. 

Figure 2. Comparison of occurrence time probability distributions: assuming the 
reaction is elementary (blue-line) and relaxing the assumption of elementariness 
(red-line). 
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As it can be observed from Figure 2, there are important differences 
between the two distributions. Even though they have the same expected 
value λ-1=1, they have different shapes and different variances. In 
particular, the variance VARHYPO in the hypo-exponential case is: 

(e -λ
2 
t - e -λ

1 
t ), t > 0

λ1 λ2
λ1 - λ2
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Because of relation (1), VARHYPO is always lesser than the variance 
VAREXP= λ-2 of the exponential case. This means that assuming the 
elementariness of a reaction when this is not true turns out in an erroneous 
modeling of the molecular noise in the times of reaction occurrence. 

To speculate on how large the error can be, we make a simple study of the 
derivative of  VARHYPO - VAREXP as a function of λ1 and of the parameter 
λ, eliminating the other variable λ2 by enforcing (1). We obtain that the 
sign of the derivative is that of a second order polynomial with a negative 
coefficient of the second order term, in other words a concave parabola, 
with the null value taken for λ1= 2λ. Therefore, the maximum modeling 
error occurs when the two elementary reactions that realize A+B→C occur 
at the same speed. This worst case is indeed the one shown in Figure 2. 

We show in Figure 3 the comparison between the distributions when the 
first reaction A+B→Y is 10 times and 100 times faster than the second one 
Y→C. As it can be observed, the hypo-exponential distribution converges 
to the exponential one as the imbalance between the speeds of the two 
reactions tends to increase. This convergence can be measured by 
checking the variance of the hypo-exponential distribution. In the worst 
case scenario shown in Figure 2, the variance is 0.5 (compare with the 
unitary variance of the exponential, elementary case), in the left case 
shown in Figure 3 the variance is 0.8347, and in the right case in the 
same figure is 0.9802. 

21  1
λ1 λ2

VARHYPO = +2 2
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Figure 3. Comparison of occurrence time probability distributions. Left side: 
elementary reaction (blue-line) and two steps reaction (red line) when step 1, 
A+B→Y is 10 times faster than step 2, Y→C. Right side: elementary reaction 
(blue-line) and two steps reaction (red line) when step 1, A+B→Y is 100 times 
faster than step 2, Y→C. 

 

Source. Developed by the author.

Another case we may consider is when we assume elementariness of a 
reaction but in fact the reaction is the results of multiple paths that combine 
to generate a product from a substrate. Say that we are modeling A→B 
whereas what is really happening is that A→X→B and A→Y→B, where X 
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random variable defined as the weighted sum of two exponential random 
variables. This random variable is known as hyper-exponential distribution 
(Amari and Misra, 1997), and its probability distribution function is simply 
the weighted sum of the exponential distributions, as follows:  

p1λ1e-λ1 t + p2λ2 e-λ2 t,t>0

The hyper-exponential distribution above has 3 parameters, which are 
indeed defining a large family of distributions. The expected value of the 
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random variable is the weighted sum of the expected times of the two 
possible reaction paths, which, to simplify the following mathematical 
treatment, we rewrite in terms of two new variables  μ1 = λ1  and  μ2 = λ2, 
as follows:

p1 + p2 = 1 + 1 

To maintain the equivalence of expected times, we need the above 
expression to be equal to λ-1. We compare in Figure 4 the distributions of 
the time to the occurrence of the production of B, in the two cases. 

Figure 4. Comparison of occurrence time probability distributions: assuming the 
reaction is elementary (blue-line) and relaxing the assumption of elementariness 
(red-line) and considering a multi-path reaction. 

 

Source. Developed by the author.
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which is always higher than the variance VAREXP= λ-2 of the exponential 
case. There is not a superior limit to the difference VARHIPER - VAREXP, 
obviously still considering variables that have the same expected value 
λ-1=1. The minimum value of the difference is zero, and it is obtained 
in the degenerate case, when λ1=λ2. This implies that assuming the 
elementariness of a reaction when this is not true and the biological 
phenomenon is in fact realized through a multi-path reaction may turn out 
in very large errors in the modeling of the molecular noise. 
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4. Do we need to 
worry about?

To complete our analysis, we still need to understand whether an 
improper assumption about the elementariness of a reaction may 
have a consequence on the predictions of a model. In other words, 

how sensitive is the prediction to an incorrect modeling of the variance 
reaction times? 

To this purpose, we consider a well-known molecular network, that has 
been studied through modeling and that is a building block of larger 
models. The network under examination is a gene expression network 
with a negative self-regulating feedback, and it is a recurrent motif in 
many organisms, including for instance the well-studied π phage (Arkin 
et al. 1998). We show (Figure 4) a cartoon representation of the network. 
The protein TF is a transcription factor for the gene expressing protein 
P. TF binds to DNA and allows transcribing the mRNA of the protein. 
The mRNA molecules get translated into protein molecules P. Molecules 
of P reversibly bind to form the protein homo-dimer species P:P, which 
reversibly binds to DNA, competing with TF. The complexation of P:P 
molecules with DNA makes it impossible to further transcribe the mRNA 
of P, thus establishing a negative self-regulation feedback. The droplet 
cartoon represents the result of a degradation reaction. 

Figure 5. Cartoon of a self-regulating gene expression network

Source. Developed by the author. 
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P:P
P:P

TF
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The following set of biochemical reactions formally encodes the cartoon 
network shown in Figure 5. As for the notation, we use the form X: Y 
to indicate a complex formed by molecules of species X and Y, and the 
empty set symbol (Ø) to denote the product of a degradation reaction. 

TF + DNA ↔ TF: DNA (r1)

TF: DNA →TF: DNA+ mRNAp (r2)

mRNAp → mRNAp + P (r3)

P + P ↔ P : P (r4)

P : P + DNA ↔ P: P: DNA (r5)

mRNAp →Ø (r6)

P → Ø (r7)

All the reactions in this model are always assumed to be elementary, see 
for instance (Samoilov and Arkin, 2006). However, let us just consider 
reaction (r2), which is a gene transcription reaction whereby a molecule 
of mRNA is produced. Gene transcription is a process that involves many 
species and thousands of reactions, see for instance Chap. 6 of (Alberts 
at al. 2002). Therefore, it is a legitimate question to ask whether assuming 
it is elementary would not have an impact on the predictions of the model. 

Suppose the quantity we want to predict is the steady-state amount 
of protein P molecules. Without entering into the molecular details of 
transcription, we consider three alternative solutions modeling for reaction 
(r2). The first option is assuming it is an elementary reaction, the second 
one is to consider it as having a reduced variance, by using an Erlang 
distribution (Amari and Misra, 1997) for its occurrence times, and the third 
one is to model it as a reaction with a variance of occurrence times higher 
than the exponential case, through the usage of a hyper-exponential 
distribution (Amari and Misra, 1997). The three different distributions have 
the same expected value. 

We couple each of the 3 modeling choices above with the same modeling 
of reactions (r1) and (r3)-(r7), for all of which we assume elementariness, 
and we plot in Figure 5 model simulation results for the three cases. On 
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the horizontal axis we report simulated time, and along the vertical axis 
we provide the time-courses of protein P abundance. These results come 
from stochastic simulations, and the curves have been obtained by the 
aggregation of 1000 different runs, for each scenario. 

Figure 6. Comparison of simulated time-courses for the gene-expression network 
model, by varying the properties of the transcription reaction noise. 

Source. Developed by the author. 

We can observe (Figure 6) that the three model versions provide totally 
different predictions about the steady-state value of protein P and the time 
by when the steady-state is achieved. Hence, we can conclude that an 
inadequate modeling choice about the elementariness of a reaction may 
jeopardize the quality of the predictions obtained through a stochastic 
model of a living system. 
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5. Conclusion

We reviewed in this paper the assumptions that are at the basis 
of the applicability of the stochastic simulation approach a la 
Gillespie, pointing out that very often those assumptions are 

not properly considered. In particular, we focused on the assumption of 
elementariness of reactions, a condition that is normally assumed to be 
true without much research. 

We showed through simple examples that the impact of a wrong modeling 
choice originated from the assumption of elementariness may profoundly 
affect the predictions that are obtained via stochastic simulation of models 
of living systems. This impact is due to the erroneous modeling of the 
noise in the reaction occurrence time. Therefore, the proper modeling of 
reaction noise reveals to be essential to gain confidence in the quality of 
predictions that can be obtained through stochastic simulation. 

The conclusion we draw is that modelers should put always additional 
care in checking the validity of Gillespie’s assumptions. Failure to do so 
may result in predictions that are very far from biological reality. Even more 
serious is the fact that, when tuning models to match experimental results, 
modelers may be forced to assign parameter values that do not retain any 
correspondence with those of the real biological system. Indeed, because 
of the inherent modeling error, forcing the predicted dynamics to match 
experimental data requires to assign values to parameters that are de 
facto meaningless. 

An excellent example of this meaningless tuning of parameters can be found 
in the modeling paper about cell-cycle (Kar et al., 2009), where to match the 
observed variances of cell cycle time and cell division size distributions the 
authors were forced to assume very high values of degradation rates for the 
mRNAs, values that are orders of magnitude higher than the experimentally 
measured ones. A possible reason that could justify the impossibility of 
matching the cell-cycle statistics while using the experimental values for 
mRNA degradation rates is the erroneous modeling of mRNA degradation 
as an elementary reaction. Indeed, it has been reported that mRNAs and 
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protein degradations are indeed processes that involve multiple steps, such 
as deadenylation of mRNA (Decker and Parker, 1993) or poly-ubiquitination 
of proteins (Ciechanover, 1994). Moreover, in (Pedraza and Paulsson, 2008) 
it is shown that multi-step mRNA production or removal can significantly 
decrease protein level fluctuations. A model that considers the non-
elementariness of mRNA production and degradation has been presented 
in (Csikász-Nagy Mura, 2010), which allowed reconciling parameter values 
and biological predictions. 

As a final comment, we would like to stress the fact that quantitative 
experimental biology has been concerned so far with the measurement of 
purely average values, without considering noise (for instance variances) 
and even less distributions of measures. This study not shows that a 
correct modeling of noise is an important aspect when dealing with model 
validation, but also that the experimental characterization of noise has 
indeed to guide the choice between different modeling alternatives. 

The emphasis on the quantification of average values is also largely 
due to the typical experimental approaches, which were normally 
aggregating measurements conducted at a population level. Nowadays, 
the technological advances allow conducting single-cell analysis of the 
dynamics of molecular species, therefore paving the way for new avenues 
of experimental and modeling research in biology. Hopefully, progresses in 
the quantitative measurement techniques will also allow getting the much 
needed information about the noise and other important characteristics of 
the reaction time occurrence. 
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