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AbstrAct

We present a detailed analysis of the M/PH/ queue, which 
allows determining an analytic form for both the transient 
and the steady-state probability distribution of customers 
at the various phases of the service. The analysis is based 
on the correspondence that can be found between the sto-
chastic process representing the number of customers in 
service at the various phases of the PH distribution, and a 
stochastic process that represents the evolution of the num-
ber of customers in the nodes of a Jackson’s network where 
all service centers are M/M/ queues.

Keywords

Phase-Type distribution, queuing network, steady-state, 
transient, analytical solution, Petri Nets.

resumen

Este documento presenta un análisis detallado de la 
cola M/PH/∞, la cual permite determinar de una forma 
analítica, tanto para un estado transitorio como para uno 
estacionario, la distribución de probabilidad de los clientes 
en las distintas fases del servicio. El análisis se basa en la 
correspondencia que se puede encontrar entre el proceso 
estocástico que representa el número de clientes en servicio 
en las diferentes fases de la distribución de PH, y en un 
proceso estocástico que representa la evolución del número 
de clientes en los nodos de una red Jackson en la que todos 
los centros de servicio son colas M/M/∞.

PAlAbrAs clAve

Distribución de tipo fase, red de colas, estado estacionario, 
transitorio, solución analítica, Redes Petri.
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résumé

Ce document présente une analyse détallée de la formule 
M/PH/∞ permettant de déterminer la distribution des prob-
abilités des clients de différentes phases du service de façon 
analytique, provisoire  ou stationnaire. L’analyse se base sur 
la correspondance pouvant être démontrée entre le proce-
sus estocastique révélant le nombre de clients en service lors 
des différentes phases de distribution de PH mais également 
lors des processus estocastiques représentant l’évolution du 
nombre de clients dans les noeuds d’un réseaun Jackson 
dans lequel tous les centres de service sont de type M/M/∞.

mots clefs

Distribution de type phase, état stationnaire, transitoire, 
solution analytique, Réseaux Petri.

resumo

Este documento apresenta uma análise detalhada de la fila 
M/PH/∞, a qual permite determinar de uma forma analítica, 
tanto para um estado transitório como para um estacionário, 
a distribuição de probabilidade dos clientes nas distintas 
fases do serviço. A análise se baseia na correspondência que 
se pode encontrar entre o processo estocástico que repre-
senta o número de clientes no serviço das diferentes fases 
de distribuição de PH, e em um processo estocástico que 
representa a evolução do número de clientes nos nós de 
uma red Jackson na que todos os centros de serviço são filas 
M/M/∞.

PAlAvrAs-chAve:

Distribuição do tipo fase, rede de filas, estado estacionário, 
transitório, solução analítica, Redes Petri.
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1. Introductión

Queuing network models are extremely useful modeling 
tools to represent parallelism, concurrency and 
competition, typical features of nowadays computing 

and telecommunication systems. At the same time, this model 
family is endowed with a set of analytic solution results (Baskett 
et al., 1975), which makes them very attractive at the moment 
of identifying performance bottlenecks, dimensioning systems 
under a design that is based on estimates of the offered 
workload, and comparing different architectural options in 
terms of their achievable performances. 

In this paper, we consider queuing networks where each 
service center is equipped with an infinite number of servers. 
This type of models represents systems where the amount of 
time that each customer spends in the system is random and 
independent of the number of other customers present in the 
system (i.e., there is no waiting time). 

This kind of models is interesting for various application 
purposes. For instance, it represents pure delay systems, such 
as transportation systems (Mandayam & Prabhakar, 2014) or 
telecommunications links, or it may be used to approximate the 
expected performance figures of multi-server systems. A more 
recent area of application of this model type is computational 
biology (Schwabe et al., 2012), where the reaction processing 
speed is very often proportional to the number of reactants 
(the so-called mass-action law). 

In its simplest version, the infinite server queue has 
independent exponentially distributed inter-arrival times and 
exponential services times, and following Kendall’s notation it is 
denoted as M/M/. This queue has an especially simple analytical 
solution. Explicit formulas for the transient distribution of the 
number of customers in the systems are available (Ellis, 2010) 
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and the steady-state distribution is known to be of Poisson 
type, of parameter, where  is the interarrival rate and  the 
service rate at each server. 

Important extensions of this simple infinite server queue 
deal with the generalization of the service time distribution. 
When no assumptions are made about the form of the service 
time distribution, the model is denoted as an M/G/∞ queue, 
where G stands for general distribution. While the transient 
solution becomes in this general scenario much more complex, 
the steady-state distribution of the customers in the queue is 
still Poisson of parameter λ/μ, insensitive to the specific form 
of the service time distribution and only dependent on its 
average μ-1, (Whitt, 2002).

We study here a generalization of the service time 
distribution to the class of phase-type distributions  
(O’Cinneade, 1990; 1999), commonly denoted as PH distri-
butions (Neuts, 1975). A PH distributed random variable can be 
informally described as the time until absorption of a Markov 
process with exactly one absorbing state. Each of the states of 
the Markov process is one of the phases of the distribution. 
The relevance of PH distributions stems from the fact that they 
have been shown to be dense in the field of all positive-valued 
distributions having a continuous (apart from the single point 
0) density function, which entails that for any positive-valued 
distribution of this kind there is a PH distribution that can 
approximate it within any given accuracy level (Nelson, 1995). 

The wide generality of the result for the steady-state 
distribution of the number of customers in an M/G/∞ queue 
still ensures that the M/PH/∞ queue stationary distribution is 
Poisson of parameter λ/μ, where μ-1 is the average of the PH 
distributed service times. However, this result only applies to 
the total number of customers in the queue, disregarding the 
stage of the service. In this study, we are interested in knowing 
the detailed distribution of customers, (i.e., the probability 
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of finding i, i ≥ 0 customers in stage j of the PH service). 
Whereas an equivalence between M/PH/∞ and networks of 
M/M/∞ queues has been derived for the moments of queue 
length (Nelson and & Taaffe, 2004), the analytical study of the 
detailed transient and steady-state distribution is a task that, 
to the best of our knowledge, has not been approached yet. 

To tackle this problem, we will resort to a decomposition 
of the M/PH/∞ queue into a network of M/M/∞ queues. By 
a simple inspection of the state-transition probabilities, 
we are able to prove that the M/PH/∞ queue is equivalent, 
in terms of the state probability distribution, to a Jackson’s 
queuing network (Jackson, 1957). This result allows obtaining 
in an analytic form the detailed transient and steady-state 
distribution of the customers at the various phases of service 
in the queue. 

The rest of the paper is organized as follows: we 
precisely define the queuing model we will be analyzing in 
this paper in section 2, and we provide our equivalence result 
in section 3. We then detail the steady-state solution of the 
queue in section 4, and in section 5 its transient solution for 
the detailed probability distribution. section 6 is devoted to 
the presentation of an application of the results. Finally, our 
concluding remarks are provided in section 7. 

2.  The model of interest

In this section, we precisely define the queuing model we will 
be dealing with. As for the notation, we shall be using the 
boldface letters to denote vectors and matrices. 

We consider an infinite-server queue, fed by a Markovian 
arrival process of intensity l. The service times are i.i.d. 
random variables, which we assume to be drawn from a PH 
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distribution. PH distributions, proposed by Neuts (1975), result 
from the convolution of negative exponential distributions. 
They generalize the exponential, Erlang, hypo and hyper-
exponential as well as Coxian distributions. PH distributions can 
be characterized as the time spent in the states of an absorbing 
Markov process until absorption occurs. If the Markov process 
has states n+1 states s0,s1,…,sn, with s0 being the absorbing 
state, we say that the corresponding PH distribution has n+1 
phases. Notice that, in case multiple absorbing states are 
present in the Markov process, they can all be collapsed into a 
single one, without changing the PH distribution. Obviously, a 
PH distribution can be expressed in terms of the infinitesimal 
generator  matrix  Q of  its  defining   Markov   process.  Matrix 
Q=  ||qi,j||  can be partitioned as follows:

 

     (1)

where S is the n×n sub-generator matrix, which contains 
the transition rates between the non-absorbing states. 
Because the n-dimensional vector vv, which contains the rates 
of absorption into state S0, must be equal to -S∙e, where e 
is a vector whose entries are all equal to 1, the service time 
distribution can be characterized by S, plus an 1×n probability 
vector α, whose entry αi  assigns the probability that phase i, 
i=1,2,…,n, be the first phase. Notice that the α∙e not necessarily 
need to be 1, as in the general case there may be a non-null 
probability of completing the service in zero time1. 

The expected value of the PH distribution is given by -α∙S-1∙e 
(Buchholz et al., Chapter 2), and therefore, by Little’s law 
(Little, 1961), the steady state distribution of customers in 
the queue is Poisson of parameter - λα∙S-1∙e. This steady-state 
distribution result is valid for the total number of customers 
in the queue, irrespective of the service phase. However, for 
any given number of customers, there exist is a combinatorial 
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number of states of the PH service that contribute to its mass 
probability. Therefore, it is of interest to determine the detailed 
distribution of the customers in the queue. This steady-state 
distribution result is valid for the total number of customers in 
the queue, irrespective of the service phase. However, for any 
given number of customers, there is a combinatorial number of 
states of the PH service that contribute to its mass probability. 
Therefore, it is of interest to determine the detailed distribution 
of the customers in the queue. 

We shall now formally define the stochastic process 
representing the evolution of the number of customers in 
the queue, enclosing enough detail in the state definition 
so to account for the phase of the service. Since there is no 
waiting time in the queue, the state of a customer is easily 
described by the current phase of the service, and the global 
state of the queue by the collection of all the customer states. 
Therefore, a very intuitive representation of the system state 
is an -dimensional vector, whose i-th entry is the number of 
customer in the queue that are experiencing the i-th phase of 
the PH service, i = 1,2,...,n . 

The state space V of the process is therefore defined as 
V= { y ∈ Nn }, where Nn  denotes the set of natural numbers 
(including 0), and the transitions outgoing a given state 
y=(y1,y2,...,yn) in V are as follows:

• At the arrival of a new customer, with rate λαi, the process 
passes from y to y+ei, for i=1,2,…,n.  

• Any customer in service at phase i will move with rate si,j to 
phase j of the service, therefore, the process passes from y 
to y - ei+ ej with rate yi si,j, for i,j=1,2,…,n, i ≠ j.   

• Any customer in service at phase i will leave the queue with 
rate vi, therefore, the process passes from y to y - ei, with 
rate yi vi , for i = 1,2,…,n,. Where ei is the n-dimensional 
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vector whose entries are all 0 apart for from the i-th, whose 
value is 1, i = 1,2,…,n. This definition of the state space is 
sufficiently detailed enough as to allow tracking the phases 
of the service for all customers in the queue.

3.  The equivalence result

In this section, we will define a Jackson’s network whose 
state transition diagram is the same as that of the M/PH/∞ 
queue. This equivalence result will allow determining the 

performance indexes of the queue via the product-form 
solution of the equivalent network. 

Consider a Jackson’s network that consists of n M/M/∞ 
nodes. At node , there is a Poisson arrival process of parameter 
λα

i
, i = 1, 2, ..., n . The service rate at node i is μi  = - si,i, i=1,2, ..., 

n, the routing probability from node i to node j is δ i,j = si,j / μi , 
i , j = 1, 2, ..., n, i ≠ j, while the probability of leaving the network 
from node i is νi /μi, i = 1, 2, ..., n.

We define the state space of the stochastic process 
underlying the Jackson’s network as the set of non-negative 
n-dimensional vectors, where the i-th component of the state 
is the number of customers at the i-th infinite server queue, i = 
1, 2, ..., n. Therefore, the state space of the Jackson’s network is 
the same as , the state space of the M/PH/∞ queue.

Let us now consider the transitions that lead to state 
changes in the Jackson’s network. 

• Arrivals: the arrival of a new customer to the network 
happens with a total rate of λα - e, and with rate λαi the 
model passes from state y to state y - ei , when a new 
customer joins the i-th queue upon arrival, for i = 1 ,2 , ..., n.
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• Change of node: any customer at node i completes service at 
rate μi and then may join node j, with probability si, j = si, j  / μi 
, which means that with rate yi  μi ( si, j / μi  ) = yi si, j , the model 
passes from state y to state y - ei  + ei , for i = 1, 2, ..., n, i ≠ j.

• Departure from the network: any customer at node i that 
completes its service may leave the network with probability 
νi /μi, which means that with rate yi  μi ( νi / μi  )= yi νi , the model 
passes from state y to state y - ei , for i = 1, 2, ..., n.

Hence, the state transition diagram of the M/M/∞ and 
that of the Jackson’s network are the same. The performance 
indexes of the M/M/∞ queue can therefore be computed via 
the solution of the product-form Jackson’s network. 

Let us notice that the equivalence we just demonstrated is 
also valid in the opposite direction. Given a Jackson’s network 
of  n M/M/∞ nodes, with arrival rate specified by: 

• a vector λ = (λ1 , λ2 , ..., λn ); 

• a vector of service rates μ ; ( μ1, μ2 , ..., μn )

• an n x (n +1) matrix of routing probabilities Θ = ⎥⎥ θ
 i , j ⎥⎥, where 

Θi ,0 is the probability that a customer would depart from 
te network after completing service at node i, i = 1, 2, ..., n, 
and Θi,j  is the probability of joining node j after completing 
service at node i, i, j, = 1, 2, ..., n.

Then, the Jackson’s network is equivalent to an M/PH/∞ 
with arrival rate λ = λ - e, and whose PH service distribution 
is  characterized by  a vector α = λ-1 (λ1 , λ2 , ..., λn), a vector  
ν = (μ1θ1,0, μ2θ2,0, ..., μnθn,0 ) and finally a sub-generator matrix 
s = ⎥⎥ si, j / μi ⎥⎥  = μi θi , j ,  i, j = 1, 2, ..., n,  with  the  diagonal term 
si, i = - νi - Σj ≠ i si,j  , i = 1, 2, ..., n.

Notice that, in a Jackson’s network, the routing pro-
babilities θi,i  may be in general greater than 0, i = 1, 2, ..., n, 



    Ontare    39

Ivan Mura

when we are modeling multiple consecutive visits to the same 
node. When we apply our transformation of the network 
into the equivalent M/PH/∞ queue, the feedback is implicitly 
modeled via a reduction of the total outgoing transition rate 
from the corresponding phase of the PH service.  

Moreover, it is important to remark that the equivalence 
can be extended to networks of M/PH/∞ queues, by mapping 
the transitions to the absorbing state of each PH service 
distribution into the corresponding transition rate between 
queues. Here, we do not treat this extension as if it would 
require additional notation to demonstrate a result that is 
quite obvious. 

4.  The steady-state probability 
distribution

The steady-state probability distribution of the M/PH/∞ 
queue is computed as the product of the marginal 
probability distributions of the nodes of the equivalent 

Jackson’s network. 

To determine the load of each M/M/∞ node in the 
network, we need to solve the network traffic balance 
equations (Jackson, 1957). For each node , we determine the 
total incoming rate of customers Λi , i = 1, 2, ..., n by solving the 
following system of linear equations: 

          Λ = λ + Λ • Δ ⇒ Λ = λ • ( Ι - Δ ) -1      (2)
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Notice that Ι - Δ in equation 2 is always non-singular, 
because it is an irreducibly diagonally dominant matrix.

For any state y = ( y1, y2, ..., yn ), let πy denote the steady-
state probability of finding the M/PH/∞ queue in state y. 
To simplify the notation, let us denote by ρi the expected 
steady-state number of customers in the i-th queue of the 

network, ρi = Λi / μi, i = 1, 2, ..., n. Then, owing to the product-
form of the state probability of the Jackson’s network, πy is 
given by the expression in the equation 3:

          (3)

Now, let us denote by μ the vector of service rates, and by μ 
the  vector  of  the reciprocals of service rates. Let us notice that 

ρ = ( ρ1 , ρ2 ,..., ρn ) can be written as ρ = Λ • Δ ( μ ), where D (x)is the 
diagonal matrix whose i-th diagonal element is equal to  xi , i = 1, 
2,..., n . Then, because matrix Ι - Δ can be written as -S • D ( μ ) , we 
can get the following expression for ρ in terms of the parameters 
that characterize the PH distribution: 

                (4)

We can use the equality stated in equation 4 to simplify 
the expression of the steady-state probability in equation 3, as 
follows: 

                                       (5)

Since each ρ1 is the steady-state average number of 
customers receiving service at phase i, i = 1, 2,..., n, - λα • S -1 • e is 
the average number of customers in the M/PH/∞ queue. This is 
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the parameter of the steady-state Poisson distribution of the 
total number of customers in the queue, irrespective of the 
phase of the service, as already known from the general result 
for M/G/∞ queues. 

To check the correctness of the mathematical treatment, 
let us consider the probability of finding exactly m ˃ 0 users in 
the queue at steady-state, independently of the service state. 
According to the Poisson distribution of parameter -λα • S-1 • e, 
this probability is equal to:

                                              (6)

From our equivalence result, we get that:

Where the equivalence before the last comes from the 
multinomial expansion formula. Thus, the aggregation of the 
detailed probability distribution allows recovering the already 
known solution for the distribution of the total number of 
customers in equation 6, which is directly obtained from the 
Poisson distribution. 

(7)
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5.  The transient state 
      probability distribution

Consider an M/M/∞ queue, with λ being the intensity of the 
Poisson arrival process and μ the rate of the exponential 
service. It is known from the literature that ρ (t), the 

transient mean of the queue for t > 0, can be determined by 
solving the following linear differential equation: 

 
                                                     (8)

Plus the initial condition of the queue at time t = 0, which 
we shall assume to be given by ρ (0) = 0. This result is for 
instance demonstrated in Eick et al. (1993) and can be easily re-
obtained by writing down the Chapman-Kolmogorov forward 
equations for the transient probability of the states of the 
queue, multiplying by i, for each i > 0 the equation of state i, 
and summing up all the resulting equations. 

In Harrison and Lemoine (1981), the authors show 
that there is a product-form solution for queuing networks 
composed by n > 1M/M/∞ queues, and that at any point in time 
t > 0, the marginal probability distribution of queue i is Poisson 
of parameter ρi (t), i = 1,2, ..., n where ρi (t) is the time dependent 
expected number of customers in the queue.

For the Jackson’s network equivalent to the M/PH/∞ 
queue, let ρ (t) be the vector of the time dependent average 
number of customers ρi (t). As detailed in Boucherie and Taylor 
(1993), ρi (t), i = 1, 2, ..., n  is the solution to the following linear 
differential equation:
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The first positive term on the right hand side of equation 
9 is the positive contribution to the expected number of 
customers that originates from the Poisson incoming flow, the 
second one is the positive contribution of the flows joining the 
queue after departure from the other nodes of the network, 
and the third one is the negative contribution from outgoing 
customers. 

We rewrite the differential equations in equation 9 in 
matrix form, as follows: 

  Where Δ ⎥⎥ si, j ⎥⎥, subject to the initial condition ρ (0) 
= 0. We can further simplify equation 10 by expressing it in 

terms of the sub-generator matrix S as follows: 

 
                                                                                       (11)

For t > 0, the solution to equation 11 is given by:

 
                                                                                    (12)

(9)

(10)
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The n x n  matrix exponential e-st can be computed directly 
when the number of phases n is limited, or the solution of 
the differential equations obtained via numerical integration 
when n is large. For any state y ∈ Ѵ , the transient probability 
distribution πy ( t ) at time t > 0 is given by the product of 
marginal transient distributions, as follows: 

            (13)

The distribution πy ( t ) converges to πy for t → ∞ (Harrison 
& Lemoine, 1981). 

6.  Application example

In this section, we apply the results that have been proven in 
previous sections to the analysis of an example of an M/PH/∞ 
queue, fed by a Poisson process of parameter λ. We consider 

the service time distribution to be a 4-phases PH defined by 
the Markov process whose state transition diagram is shown 
in, where S0 is the absorbing state, and we assume that α1 
= 1, that is the PH service times always start in the phase 
represented by state S1. The rate of transition from state Si to 
state Sj is denoted by qi , j, i , j = 1, 2, 3, 4, i ≠  j.
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Figure 1. State transition diagram of the example PH distribution.

Source. By the author.

By ordering the states as S0, S1, S2, S3 the infinitesimal 
generator matrix can be partitioned as shown in equation14, 
and the sub-generator matrix S and vector ν are in this case as 
follows: 

                                                         (14)

To better exemplify the rationale and application of the 
proposed analysis approach, we build built a model of the M/
PH/∞ queue as a Stochastic Petri Net (Ajmone-Marsan, 1990). 
The Stochastic Petri Net (SPN) shown in Figure 2 has exactly 
one place for each phase of the distribution and one transition 
for each of the possible phase transition events, plus transition 
t
α
 to model the arrival process. The correspondence between 

elements of the net and the M/PH/∞ is obvious and requires no 
further explanation. As for the rates assigned to transitions, 
the rate of ta is equal to λ, and the rate of transition  ti , j is given 
by the product of qi , j and the marking of the input place, to 
account for the infinite server-semantics of the service.
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Figure 2. SPN model of the example M/PH/∞ queue.

Source. By the author.

The marking of each place of the model in Figure 2 
(i.e., the number of tokens contained therein) represents, at 
any time, the number of customers of the M/PH/∞ that are 
experiencing phase j of the service, j = 1, 2, 3. The number 
of tokens accumulated into place P0 would represent the 
total number of customers served by the queue. Since this 
place would prevent the model from having a steady-state 
distribution, we simply remove it, a change that does not 
affect the service distribution time. 

We make a simple transformation of the SPN in Figure 2 to 
convert it into an equivalent Generalized Stochastic Petri Net 
(Balbo, 2007), shown in Figure 3. In the Generalized Stochastic 
Petri Net (GSPN) model, the competitions among timed 
transitions are eliminated, and the routing among phases 
is now modeled by probabilistic choices of instantaneous 
transitions (thin bars). 
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Figure 3. GSPN model of the example M/PH/∞ queue.

Source. By the author.

The conversion from the SPN to the GSPN version of 
the model nicely explains the rationale of the equivalence. 
It is easy to recognize, in the GSPN model shown in Source:, 
three queues, enclosed into the dashed rectangles. Therefore, 
we can convert the GSPN in the Jackson’s network shown in 
Source:, where all service stations are simple M/M/∞ queues.

Figure 4. Jackson’s network equivalent to the example M/PH/∞ queue.

Source. By the author.

The parameters that define the Jackson’s network in 
Source: are obtained according to the steps detailed in section 
3. The service rates μ

1
 , μ

2
 and μ3 of the nodes, as per the 

equivalence result and the structure of the transition rates 
detailed in equation 14, are as follows: 
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                                                             (15)

While the routing probabilities are as follows: 

              
                                                     (16)

The Jackson’s network in Figure 4 is straightforwardly 
solved in terms of the steady-state customer distribution. 
To make a concrete example, let us assume that the rates of 
transition in the Markov process that define the PH distributions 
are as shown in Figure 5, which corresponds to the pair S and 
ν shown in equation 15.

Figure 5. Absorbing Markov process defining an instance of the PH 
distribution.

Source. By the author.

(15)
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Then, setting λ = 20, the average number of users in 
each of the stages of the PH distribution is computed by 
equation 4, and is given by vector ρ = - λα • S-1, where α 
(1,0,0) because we are assuming that all services start at 
phase 1. The expected number of customers at each stage 
of the service is ρ = (8.0,1.3, 16.o). By summing the three 
entries of vector ρ, we get the total number of users in the 
queue at steady-state, 25.3, which is the same result that 
would be obtained from the M/G/∞ equilibrium formula. 
From our detailed result, we can however determine the 
joint probability of having any number of customers in 
the different stages of the service, as the product of the 
marginal distributions of the queues, which are all Poisson, 
with parameters given by the entries of vector ρ. 

The transient solution of the queue requires the solution 
of the set of linear differential equations defined in equation 
10. By computing the matrix exponential with Maxima 
(http://maxima.sourceforge.net/) and by using the formula in 
equation 12, we get the solution for ρ (t), the vector of the 
transient average number of users, for which we show a chart 
over time in., assuming the queue is empty at time t = 0 .
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Figure 6. Plot of the transient average number of customers at the PH 

service phases.

Source. By author.

At any point in time, vector  provides the parameters of the 
Poisson distributions that characterize the marginal transient 
state probability distributions of the queues in the Jackson’s 
network.

7.  Conclusions

In this paper, we presented an approach to the detailed analysis 
of the transient and steady-state probability distribution for 
the M/PH/∞ queue. We provided a simple equivalence result 

assuring that the detailed state probability distribution of the 
number of customers at the various phases of the service has 
product form, and the terms of the product are computed 
from the state occupancy probability of a Jackson’s network 
that only consists of M/M/∞ nodes. 
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We provided the explicit expression of the steady-state 
and transient detailed probability distribution in terms of 
the initial phase probability assignment at the beginning of 
the PH distributed service and of the PH transition matrix. 
The computational cost of the solution method we proposed 
is determined by the one required for the analysis of the 
equivalent Jackson’s network, specifically by the solution of 
the traffic balance equations of the network for the steady-
state, and the computation of a matrix exponential for the 
transient probability distribution. Finally, we remark that 
the equivalence result we presented in this paper is directly 
applicable to open or closed networks of M/PH/ queues.
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