Visible Light Communication

Comunicación con luz visible A Short Review

Contenido principal del artículo

Juan Felipe Gutiérrez
Jesús María Quintero

Resumen

This work presents a general and introductory review of visible light communication. Visible light communication or VLC refers to wireless communications using a spectral range from 380 to 780 nm for the transmission of information. This part of the optical-electromagnetic range presents some advantages to current wireless radio frequency technologies, as well as several challenges to its development and application. Different visible light communication systems have been developed for indoor, outdoor, domestic, and industrial fields where the luminaire performs two tasks: general lighting and data transmission, since this type of communication has important and valuable applications. Recently, research has been performed to improve each functional block’s performance that composes this kind of communication system. The incursion VLC poses challenges such as LED bandwidth limited by the carrier lifetime, the LED-Driver Linearity, it’s up-link; the general lighting infrastructure to the internet; and the dimming and general lighting performance. It is concluded that the incursion of Visible Light Communication into the already extended spectrum of wireless communications systems will complement and make it less harmful to our environment as international regulation has helped to improve this technology substantially. 

Palabras clave:

Detalles del artículo

Referencias (VER)

Agrawal, G. P. (2003). Fiber-Optic communication systems. Wiley.

Afzalan, M., & Jazizadeh, F. (2019). Indoor positioning based on visible light communication: A performance-based survey of real-world prototypes. ACM Computing Surveys (CSUR), 52(2), 1-36. https://dl.acm.org/doi/10.1145/3299769

Allycan Mapunda, G., Ramogomana, R., Marata, L., & Basutli, B. (2020). Indoor Visible Light Communication: A Tutorial and Survey. Wireless Communications and Mobile Computing, 2022, Article ID 8881305. https://doi.org/10.1155/2020/8881305

Alsulami, O. Z., Alresheedi, M. T., & Elmirghani, J. M. (2019, August). Infrared uplink design for visible light communication (VLC) systems with beam steering. In 2019 IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International Conference on Embedded and Ubiquitous Computing (EUC) (pp. 57-60). IEEE. https://doi.org/10.1109/CSE/EUC.2019.00020

Alsulami, O. Z., Saeed, S. O., Mohamed, S. H., El-Gorashi, T. E., Alresheedi, M. T., & Elmirghani, J. M. (2020, July). Shared optical wireless cells for in-cabin aircraft links. In 2020 22nd International Conference on Transparent Optical Networks (ICTON) (pp. 1-5). IEEE. https://doi.org/10.1109/ICTON51198.2020.9203203

Bhalerao, M., Sonavane, S., & Kumar, V. (2013). A survey of wireless communication using visible light. International Journal of Advances in En-gineering & Technology, 5(2), 188-197. https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.384.8028&rep=rep1&type=pdf

Boubezari, R., Le Minh, H., Ghassemlooy, Z., & Bouridane, A. (2016). Smart-phone camera based visible light communication. Journal of Lightwave Technology, 34 (17), 4121-4127.

Bradby, I. (2008). Practical experience in radio frequency induced ignition risk assessment for comah/dsear compliance. Institution of chemical engineer’s symposium series, 154, 1-15. https://www.icheme.org/media/9756/xx-paper-62.pdf

Butala, P. M., Chau, J. C., & Little, T. D. (2012). Metameric modulation for di use visible light communications with constant ambient lighting. In Optical wireless communications (iwow), 2012 international workshop on (pp. 1{3). https://doi.org/10.1109/IWOW.2012.6349697

Chavez-Burbano, P., Rabadan, J., Guerra, V., & Perez-Jimenez, R. (2021). Flickering-free distance-independent modulation scheme for OCC. Electronics, 10(9), 1103. https://www.mdpi.com/2079-9292/10/9/1103

Chen, S.-H., & Chow, C.-W. (2014). Color-shift keying and code-division multiple-access transmission for RGB-LED visible light communications using mobile phone camera. IEEE Photonics Journal, 6(6), 1-6. https://doi.org/10.1109/JPHOT.2014.2374612

Chi, N., Zhou, Y., Wei, Y., & Hu, F. (2020). Visible light communication in 6G: Advances, challenges, and prospects. IEEE Vehicular Technology Magazine, 15(4), 93-102. https://doi.org/10.1109/MVT.2020.3017153

Chow, B. (2015). Assessing the impact of Wi-Fi radio frequency interference on mobile application quality of experience [Unpublished master’s thesis, University of Victoria]. http://hdl.handle.net/1828/6961

The CAMP Vehicle Safety Communications Consortium (2005). Vehicle safety communications project task 3 final report: Identify intelligent vehicle safety applications enabled by DSRC. https://rosap.ntl.bts.gov/view/dot/3925

Deepa, T., & Mathur, H. (2019). Performance analysis of digitized orthogonal frequency division multiplexing system for future wireless communication. Wireless Personal Communications, 109(4), 2239-2250. https://www.springerprofessional.de/en/performance-analysis-of-digitized-orthogonal-frequency-division-/17100402

Dimitrov, S., & Haas, H. (2015). Principles of LED light communications: Towards networked Li-Fi. Cambridge University Press. https://doi.org/10.1017/CBO9781107278929

Durukan, F., Güney, B. M., & Özen, A. (2019, July). A novel CSK modulated OFDM system for visible light communication. 2019 42nd International Conference on Telecommunications and Signal Processing (TSP), 647-650. https://doi.org/10.1109/TSP.2019.8768872

El Gamal, M. M., Maheswar, R., Fayed, H. A., Aly, M. H., Ismail, N. E., & Mokhtar, A. (2021). Dark light visible light communication positioning system with received signal strength technique. Optical and Quantum Electronics, 53(9), 1-16. https://www.springerprofessional.de/en/dark-light-visible-light-communication-positioning-system-with-r/19610196

Elgala, H., Mesleh, R., & Haas, H. (2011). Indoor optical wireless communication: potential and state-of-the-art. IEEE Communications Magazine, 49 (9), 56-62. https://doi.org/10.1109/MCOM.2011.6011734

Elgala, H., Mesleh, R., Haas, H., & Pricope, B. (2007). OFDM visible light wireless communication based on white LEDs. 2007 IEEE 65th Vehiclar Technology Conference-VTC2007-Spring,007. Vtc2007-18. https://doi.org/10.1109/VETECS.2007.451

Fattal, D., Fiorentino, M., Tan, M., Houng, D., Wang, S., & Beausoleil, R. G. (2008). Design of an efficient light-emitting diode with 10 GHz modulation bandwidth. Applied Physics Letters, 93(24), 243501. https://doi.org/10.1063/1.3046100 Gao, S. (2013). Performance study for indoor visible light communication systems [Unpublished master’s thesis, University of Ottawa]. https://ruor.uottawa.ca/bitstream/10393/23986/1/Gao_Shuo_2013_Thesis.pdf

Graeme, J. (1995). Photodiode Amplifiers: OP AMP Solutions. McGraw-Hill, Inc.

Grubor, J., Randel, S., Langer, K.-D., & Walewski, J. (2008). Bandwidth-efficient indoor optical wireless communications with white light-emitting diodes. 2008 6th International Symposium on Communication Systems, Networks and Digital Signal Processing. https://doi.org/10.1109/CSNDSP.2008.4610769

Guo, J. N., Zhang, J., Xin, G., & Li, L. (2020, December). Constant transmission efficiency dimming control scheme for VLC systems. Photonics, 8(1), 7. https://doi.org/10.3390/photonics8010007

Gutierrez, J. F. (2018). Diseño e implementación de dos sistemas de comunicación con luz visible mediante las modulaciones OOK y CSK para análisis de desempeño de transmisión de datos e iluminación. [Unpublished master’s thesis, Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/69483

Halsall, F. (2006). Computer networking and the Internet. Pearson Education India.

IEEE Standards Association. (2019). IEEE Standard for Local and metropolitan area networks—Part 15.7: Short-Range Optical Wireless Communications (IEEE Std 802.15.7-2018, Revision of IEEE Std 802.15.7-2011) (pp. 1-407). https://ieeexplore.ieee.org/document/8697198

Jani, M., Garg, P., & Gupta, A. (2019). Performance analysis of a mixed cooperative PLC–VLC system for indoor communication systems. IEEE Systems Journal, 14(1), 469-476. https://doi.org/10.1109/JSYST.2019.2911717

Kahn, J. M., & Barry, J. R. (1997). Wireless infrared communications. Proceedings of the IEEE , 85(2), 265-298. https://ee.stanford.edu/~jmk/pubs/proc.ieee.2.97.pdf

Khalid, A., Cossu, G., Corsini, R., Choudhury, P., & Ciaramella, E. (2012). 1-GB/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation. IEEE Photonics Journal, 4(5), 1465-1473. https://doi.org/10.1109/JPHOT.2012.2210397

Kumari, M., Sharma, R., & Sheetal, A. (2021). A hybrid next-generation passive optical network and visible light communication for future hospital applications. Optik, 242, 166978. https://doi.org/10.1016/j.ijleo.2021.166978

Lapinsky, S. E., & Easty, A. C. (2006). Electromagnetic interference in critical care. Journal of Critical Care, 21(3), 267-270. https://doi.org/10.1016/j.jcrc.2006.03.010

Le Minh, H., O’Brien, D., & Faulkner, G. (2010). A gigabit/s indoor optical wireless system for home access networks. 2010 7th International Symposium on Communication Systems, Networks & Digital Signal Processing (CSNDSP 2010), 532-536. https://doi.org/10.1109/CSNDSP16145.2010.5580358

Lee, C., Zhang, C., Cantore, M., Farrell, R. M., Oh, S. H., Margalith, T., Speck, J. S., Shuji, N., Bowers, J. E. & DenBaars, S. P. (2015). 4 Gbps direct modulation of 450 nm GaN laser for high-speed visible light communication. Optics express, 23(12), 16232-16237. https://doi.org/10.1364/OE.23.016232

Lee, Y. C., Lai, J. L., & Yu, C. H. (2016, April). The LED driver IC of visible light communication with high data rate and high efficiency. 2016 International Symposium on VLSI Design, Automation and Test (VLSI-DAT), 1-4. https://doi.org/10.1109/VLSI-DAT.2016.7482534

Li, Y., Ghassemlooy, Z., Tang, X., Lin, B., & Zhang, Y. (2018). A VLC smartphone camera based indoor positioning system. IEEE Photonics Technology Letters, 30(13), 1171-1174. https://doi.org/10.1109/LPT.2018.2834930

Lin, Z., Jiang, M., & Tan, H. Z. (2018, August). Constellation design for complex colour shift keying aided optical OFDM systems. 2018 IEEE 88th Vehicular Technology Conference (VTC-Fall), 1-5. https://doi.org/10.1109/VTCFall.2018.8691040

Liu, Y., Zheng, C.-T., Li, Y.-T., & Ye, W.-L. (2012). Portable Mbps point-to-point OOK-NRZ visible light communication devices based on white light-emitting diode illuminant. Microwave and Optical Technology Letters, 54(10), 2248-2252. https://doi.org/10.1002/mop.27052

Lu, X., Lu, C., Yu, W., Qiao, L., Liang, S., Lau, A. P. T., & Chi, N. (2019). Memory-controlled deep LSTM neural network post-equalizer used in high-speed PAM VLC system. Optics express, 27(5), 7822-7833. https://doi.org/10.1364/oe.27.007822

Ma, H., Lampe, L., & Hranilovic, S. (2013). Integration of indoor visible light and power line communication systems. 2013 IEEE 17th International Symposium on Power Line Communications and Its Applications, 291-296. https://people.ece.ubc.ca/lampe/Preprints/2013-VLC-PLC.pdf

Malacara, D. (2002). Color vision and colorimetry: theory and applications (Vol. 2). SPIE Press.

Ministerio de Minas y Energía (2010). Reglamento técnico de iluminación y alumbrado público.

Monteiro, E., & Hranilovic, S. (2014). Design and implementation of color-shift keying for visible light communications. Journal of Lightwave Technology, 32(10), 2053-2060. https://doi.org/10.1109/JLT.2014.2314358

Morgan, D. (1994). A handbook for EMC testing and measurement (Vol. 8). The Institution of Engineering and Technology.

NASA. (2013). Laser communication system sets record with data transmissions to and from moon. https://sservi.nasa.gov/articles/nasa-laser-communication-system-sets-record-with-data-transmissions-to-and-from-moon/

Nguyen, D. T., Park, S., Chae, Y., & Park, Y. (2019). VLC/OCC hybrid optical wireless systems for versatile indoor applications. IEEE Access, 7, 22371-22376. https://doi.org/10.1109/ACCESS.2019.2898423

Ntogari, G., Kamalakis, T., Walewski, J., & Sphicopoulos, T. (2011). Combining illumination dimming based on pulse-width modulation with visible-light communications based on discrete multitone. Journal of Optical Communications and Networking, 3(1), 56-65. https://doi.org/10.1364/JOCN.3.000056

O’Brien, D. C., Faulkner, G., Le Minh, H., Bouchet, O., El Tabach, M., Wolf, M., Walewski, J. W., Randel, S., Nerreter, S. Franke, M. Langer, K.-D., Grubor, J., & Kamalakis, T. (2008). Home access networks using optical wireless trans-mission. 2008 IEEE 19th International Symposium on Personal, Indoor and Mobile Radio Communications, 1-5. https://doi.org/10.1109/PIMRC.2008.4699864

O’Brien, D. C., Zeng, L., Le-Minh, H., Faulkner, G., Walewski, J. W., & Randel, S. (2008). Visible light communications: Challenges and possibilities. IEEE 19th International Symposium on Personal, Indoor and Mobile Radio Communications, 1-5. https://www.researchgate.net/profile/Walewski_Joachim/publication/224357544_Visible_light_communications_Challenges_and_possibilities/links/0912f50bf73fa1fa0e000000/Visible-light-communications-Challenges-and-possibilities.pdf

Pathak, P. H., Feng, X., Hu, P., & Mohapatra, P. (2015). Visible light communication, networking, and sensing: A survey, potential and challenges. IEEE Communications Surveys & Tutorials, 17(4), 2047-2077. https://doi.org/10.1109/COMST.2015.2476474

Pham, N. Q., Rachim, V. P., & Chung, W. Y. (2019). High-accuracy VLC-based indoor positioning system using multi-level modulation. Optics Express, 27(5), 7568-7584. https://doi.org/10.1364/OE.27.007568

Rahman, M. S., Haque, M. M., & Kim, K.-D. (2011). Indoor positioning by led visible light communication and image sensors. International Journal of Electrical and Computer Engineering, 1(2), 161-170. http://dx.doi.org/10.11591/ijece.v1i2.165

Rahman, M. H., Sejan, M. A. S., & Chung, W. Y. (2021, February). Long-Distance Real-Time Rolling Shutter Optical Camera Communication Using MFSK Modulation Technique. In Intelligent Human Computer Interaction: 12th International Conference, IHCI 2020, Daegu, South Korea, November 24–26, 2020, Proceedings, Part II (pp. 53-62). Cham: Springer International Publishing.

Rajagopal, S., Roberts, R. D., & Lim, S.-K. (2012). IEEE 802.15. 7 visible light communication: modulation schemes and dimming support. IEEE Communications Magazine, 50(3), 72-82. https://doi.org/10.1109/MCOM.2012.6163585

Saeed, N., Guo, S., Park, K. H., Al-Naffouri, T. Y., & Alouini, M. S. (2019). Optical camera communications: Survey, use cases, challenges, and future trends. Physical Communication, 37, 100900. https://doi.org/10.1016/j.phycom.2019.100900

Shaaban, K., Shamim, M. H. M., & Abdur-Rouf, K. (2021). Visible light communication for intelligent transportation systems: A review of the latest technologies. Journal of Traffic and Transportation Engineering (English Edition), 8(4), 483-492. https://doi.org/10.1016/j.jtte.2021.04.005

Singh, R. (2015). Physical layer techniques for indoor wireless visible light com-munications [Unpublished doctoral dissertation, University of Sheffield]. https://etheses.whiterose.ac.uk/13818/

Tuo, J., Shams, H., & Corbett, B. (2012). Visible light communication by using commercial phosphor based white LEDs. IET Irish Signals and Systems Conference (ISSC 2012), 1-4. https://doi.org/10.1049/ic.2012.0227

Uysal, M., Capsoni, C., Ghassemlooy, Z., Boucouvalas, A., & Udvary, E. (2016). Optical wireless communications: An emerging technology. Springer. https://doi.org/10.1007/978-3-319-30201-0

Uysal, M., & Nouri, H. (2014). Optical wireless communications: An emerging technology. 2014 16th International Conference on Transparent Optical Networks (ICTON), 1-7. https://doi.org/10.1109/ICTON.2014.6876267

VLCC. (2007). Visible light communications consortium 2007. http://www.vlcc.net

Wang, X., & Shen, J. (2019, May). Machine learning and its applications in visible light communication based indoor positioning. 2019 International Conference on High Performance Big Data and Intelligent Systems (HPBD&IS), 274-277. https://doi.org/10.1109/HPBDIS.2019.8735490

Zadobrischi, E., Avătămănitei, S. A., Căilean, A. M., Dimian, M., & Negru, M. (2019, September). Toward a hybrid vehicle communication platform based on VLC and DSRC technologies. 2019 IEEE 15th International Conference on Intelligent Computer Communication and Processing (ICCP), 103-107. https://doi.org/10.1109/ICCP48234.2019.8959672

Zhang, D.-F., Zhu, Y.-J., & Zhang, Y.-Y. (2013a). Multi-LED phase-shifted OOK modulation based visible light communication systems. IEEE Photonics Technology Letters, 25(23), 2251-2254. https://doi.org/10.1109/LPT.2013.2283583

Zhang, W., & Kavehrad, M. (2013b, February). Comparison of VLC-based indoor positioning techniques. Broadband access communication technologies VII, 8645, 86450M. https://doi.org/10.1117/12.2001569

Zhang, X., Babar, Z., Petropoulos, P., Haas, H., & Hanzo, L. (2021). The evolution of optical OFDM. IEEE Communications Surveys & Tutorials, 23(3), 1430-1457. https://doi.org/10.1109/COMST.2021.3065907

Descargas

Los datos de descargas todavía no están disponibles.

Citado por