Abu-Mulaweh, H. (2004). Portable experimental apparatus for demonstrating thermodynamics principles. International Journal of Mechanical Engineering Education, 32(3). DOI: https://doi.org/10.7227/IJMEE.32.3.4
Acevedo, J.; Valencia, G.; Obregón. L., (2020). Development of a new educational package based on e-learning to study engineering thermodynamics process: combustion, energy and entropy analysis. Heliyon, 6(6), E04269. DOI: https://doi.org/10.1016/j.heliyon.2020.e04269
Armas, J.; Lapido-Rodríguez, M.; Gómez, R.; Valdivia-Nodal, Y. (2011). Evaluación termodinámica de sistemas de climatización centralizados por agua helada usando herramientas de inteligencia artificial. Ingeniería e Investigación, 31(2),134-142.
Bailey, M.; Albert, B.; Arnas, O.; Klawunder, S.; Klegka, K.; Wolons, D. (2004). A unique thermodynamics course with laboratories. International Journal of Mechanical Engineering Education, 32(1), 54-77. DOI: https://doi.org/10.7227/IJMEE.32.1.5
Bejan, A. (2018). Thermodynamics today. Energy, 160, 1208-1219. DOI: https://doi.org/10.1016/j.energy.2018.07.092
Bolaños, P. D. (2008). Sistematización del balance térmico en la máquina 4 de Propal S. A (Trabajo de grado). Universidad Autónoma de Occidente. Santiago de Cali, Colombia. Recuperado de https://bit.ly/3zS0gWY
Bonwell, C. C.; Eison, J. A. (1991). Active learning: creating excitement in the classroom. Washington: The George Washington University, School of Education and Human Development. Recuperado de https://bit.ly/3zFNCKs
Boyatzis, R. E.; Rochford, K.; Cavanagh, K. V. (2017). Emotional intelligence competencies in engineer’s effectiveness and engagement. Career Development International, 22(1), 70-86. DOI: https://doi.org/10.1108/CDI-08-2016-0136
Calvo, L.; Prieto, C. (2016). The teaching of enhanced distillation processes using a commercial simulator and a project-based learning approach. Education for Chemical Engineers, (17), 65-74. DOI: https://doi.org/10.1016/J.ECE.2016.07.004
Cardona, M. (11 de abril de 2019). Ser responsables en un mercado que crece. La República. Recuperado de https://bit.ly/3m7ak9k
Caserta, S.; Tomaiuolo, G.; Guido, S. (2021). Use of a smartphone-based student response system in large active-learning. Chemical Engineering Thermodynamics classrooms. Education for
Chemical Engineers, 36, 46-52. DOI: https://doi.org/10.1016/j.ece.2021.02.003
Cengel, Y.; Boles, M. (2012). Termodinámica (7ª ed.). Ciudad de México: Mc Graw Hill.
Foroushani, S. (2019). Misconceptions in engineering thermodynamics: a review. International Journal of Mechanical Engineering Education, 47(3), 195-209. DOI: https://doi.org/10.1177%2F0306419018754396
Imanian, A.; Modarres, M. (2017). Thermodynamics as a fundamental science of reliability. Proceedings of the Institution of Mechanical Engineers, Part O. Journal of Risk and Reliability, 230(6), 598-608. DOI: https://doi.org/10.1177%2F1748006X16679578
Jiménez-Espinoza, A.; Pérez-Martínez, C. (2010). Las emociones en la deserción del conocimiento matemático. Praxis & Saber, 1(1), 191-216. Recuperado de https://bit.ly/3ALyA7m
Lang, A.; Puzinauskas, P. (2008). Adding a continuous improvement design element to a sophomore-level thermodynamics course: using the drinking bird as a heat engine. International Journal of Mechanical Engineering Education, 36(4), 366-372. DOI: https://doi.org/10.7227%2FIJMEE.36.4.7
Maldonado-Currea, A.; Luque-Zabala, A. (2018). Implementación de las TIC en el proceso de enseñanza y aprendizaje de las ciencias, Revista Virtu@lmente, 6(1), 90-98. DOI: https://doi.org/10.21158/2357514x.v6.n1.2018.2107
Mardones, C.; Paredes, C.; Jiménez, J.; Farías, O; Catalán, P. (2015). Tecnologías de control de emisiones y disponibilidad de gas natural como opciones para reducir emisiones de MP2,5 en el Concepción Metropolitano. Revista de Análisis Económico, 30(1), 3-23. DOI: https://doi.org/10.4067/S0718-88702015000100001
Midkiff, K.; Litzinger, T.; Evans, D. (2001). Development of engineering thermodynamics concept inventory instruments. Ponencia presentada en 31st Annual Frontiers in Education Conference. Impact on Engineering and Science Education. IEEE, Reno, EE. UU., 10-13 de octubre. DOI: https://doi.org/10.4067/S0718-88702015000100001
Mulop, N.; K, Mohd-Yusof.; Tasir, Z. (2012). A review on enhancing the teaching and learning of thermodynamics. Procedia. Social and Behavioral Sciences, 56, 703-712. DOI: https://doi.org/10.1016/j.sbspro.2012.09.706
Powell, M.; Rubinsky, P. B. (2019). A shift from the isobaric to the isochoric thermodynamic state can reduce energy consumption and augment temperature stability in frozen food storage. Journal of Food Engineering, 251, 1-10. DOI: https://doi.org/10.1016/j.jfoodeng.2019.02.001
Radmehr, F.; Drake, M. (2019). Revised Bloom’s taxonomy and major theories and frameworks that influence the teaching, learning, and assessment of mathematics: a comparison. International Journal of Mathematical Education in Science and Technology, 50(6), 895-920. DOI: https://doi.org/10.1080/0020739X.2018.1549336
SpiraxSarco. (2018). Accesorios. Recuperado de https://bit.ly/3zLiBEX
SpiraxSarco. (2019). Termocompresores. Recuperado de https://bit.ly/39JIf28
SpiraxSarco. (s.f.). Productos. Recuperado de https://bit.ly/3EQSSPf
Suwa, T.; Kurniawan, T (2020). Redesigning a commercial combined cycle in an undergraduate thermodynamics course: connecting theory to practical cycle design. International Journal of Mechanical Engineering Education, Febrero, 1-20. DOI: https://doi.org/10.1177%2F0306419020904647
Tuttle, K., Wu, C. (2002). Computer-based thermodynamics. Journal of Educational Technology Systems, 30(4), 427-436. DOI: https://doi.org/10.2190/B0X1-R5PW-LCYJ-YYME
Uniminuto. (s.f.). Sistema Nacional de Bibliotecas. Recuperado de https://bit.ly/3m2xRZ5
Vigeant, M. (2021). A portfolio replacement for a traditional final exam in thermodynamics. Education for Chemical Engineers, 35, 1-6. DOI: https://doi.org/10.1016/j.ece.2020.11.010
Wright, K. (2020). Collaborative projects with simulation assignments in mechanical Engineering thermodynamics courses. International Journal of Mechanical Engineering Education, 48(2), 140-161. DOI: https://doi.org/10.1177/0306419018803624
Yang, F.; Qingbo, Y.; Zongliang, Z.; Hou, L. (2019). Thermodynamic analysis of waste heat recovery of aluminum dross in electrolytic aluminum industry. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 43(9), 1047-1059. DOI: https://doi.org/10.1080/15567036.2019.1634163