Modelo para el desarrollo de proyectos de innovación en tecnología para la aviación: caso de estudio banco de pruebas digital para las pruebas caza fallas de la GCU1

Contenido principal del artículo

Autores

Carlos Arturo Cabrera-Arias https://orcid.org/0000-0001-5230-3941
Fabián Steven Garay-Rairan https://orcid.org/0000-0001-8863-5673
Diana Carolina Contreras-Gutiérrez https://orcid.org/0000-0002-8996-5348
Oscar Edilson Gómez-Vargas https://orcid.org/0000-0002-5371-9444

Resumen

                                                                                      Rev.esc.adm.neg


La Escuela de Aviación del Ejército Nacional de Colombia desarrolla desde hace un tiempo proyectos de innovación en tecnología sin modelos de gestión que respondan a las características de los productos y las necesidades de la industria aeronáutica. Por esta razón, se presenta un modelo para el desarrollo de proyectos de innovación en tecnología dirigido a este campo, integrando buenas prácticas de gestión de proyectos desde el análisis y el desarrollo de productos, modelos y estándares internacionales de la ingeniería para su aplicación en futuros proyectos. El modelo construido se aplicó al diseño de un banco de pruebas digital para las pruebas caza fallas de la GCU —Generator Control Unit— de las aeronaves Beechcraft King, en las que se analizó su aplicación en cada una de las fases del desarrollo del proyecto y el resultado final respecto a tiempos, costos y alcance. Como resultado fue posible determinar que el modelo contribuyó a la correcta gestión en cada fase del proyecto y aseguró un cumplimiento adecuado del tiempo y los procedimientos técnicos y de calidad, en comparación con otro proyecto ejecutado sin el uso del modelo. La evaluación del modelo permitió verificar también la innovación del producto que para este caso fue de enfoque estructural, por lo que se puede considerar como modelo integrado IIP — Integrate, Innovation, Process—, lo que permite la generación de nuevo conocimiento y de nuevos modelos de negocio en fases posteriores de maduración y futura comercialización.

Palabras clave:

Detalles del artículo

Referencias

Ahn, H.; Kim, H.; Choi, H. L. (2018). Integrated risk management method development for multipleaerospace projects using a single index expression. International Journal of Aeronautical and Space Sciences, 19(4), 1052-1062. DOI: https://doi.org/10.1007/s42405-018-0092-5

Alvarado, V. V. (2012). Técnicas efectivas para la toma de requerimientos. México: Northware Software Development.

Arzola de la Peña, N. (2011). Metodología de diseño para ingeniería. Bogotá: Universidad Nacional de Colombia.

Barrio, D.; García, S.; Solís, J. P. (2011). Modelo para la gestión de la innovación tecnológica en el sector inmobiliario. Revista Ingeniería de Construcción, 26(3), 353-368. DOI: https://doi.org/10.4067/S0718-50732011000300006

Bonzel, P. (2017). Identification of risk factors and influences on aeronautical product development performance. En 38th International Annual Conference of the American Society for

Engineering Management (ASEM 2017). Huntsville, EE.UU., 18-21 de octubre.

Cabrera-Arias, C. A.; Garay-Rairan, F. S.; Arango-Calderon, I.; Gómez-Vargas, O. E. (2020). Design of a troubleshooting Digital test bench for the Beechcraft King C-90, 200, B 200, 300 and 350 aircraft GCU. Ingeniería, 25(3), 1-15.

Chamónica, D. D.; Gómez, M. (2017). Desarrollo tecnológico del sector aeronáutico en México, Canadá y EE. UU. a partir de la I+D e IED, 2005-2015. Revista Cimexus, XII(1), 13-33.

Ciampa, P. D.; Nagel, B. (2020). Agile Paradigm: the next generation collaborative MDO for the development of aeronautical systems. Progress in Aerospace Sciences, 119, 100643. DOI: https://doi.org/10.1016/j.paerosci.2020.100643

Documento Conpes 3582. (2016). Desarrollo productivo del sector aeronáutico DNP. Electronic Industires
Alliance. (7 de enero de 1999). EIA-632 Processes for Engineering a System. Recuperado de https://bit.ly/3bQ1KIn Fernandes, G.; Moreira, S.; Araújo, M.; Pinto, E. B.; Machado, R. J. (2018). Project management practices for collaborative university-industry R&D: a hybrid approach. Procedia Computer Science, 138, 805-814. DOI: https://doi.org/10.1016/j.procs.2018.10.105

Forozandeh, M.; Teimoury, E.; Makui, A. (2019). A mathematical formulation of time-cost and reliability optimization for supply chain management in research-development projects. Rairo-Operations Research, 53(4), 138-1406. DOI: https://doi.org/10.1051/ro/2018068

Garrett. (1987). Maintenance Manual, Pub. L. No. TPE331-5. Arizona: Allied-Signal Aerospace Company.

Goldstein, A. P.; Kearney, M. (2020). Know when to fold ‘em: an empirical description of risk management in public research funding. Research Policy, 49(1), 103873. DOI: https://doi.org/10.1016/j.respol.2019.103873

IEEE. (2005). IEEE Standard for Application and Management of the Systems Engineering Process. DOI: https://doi.org/10.1109/IEEESTD.2005.96469

Incose (International Council on Systems Engineering the Systems Engineering Research Center (SERC), and the IEEE Computer Society. (2018). Sebok. (Guide to the Systems Engineering Body of Knowledge). Recuperado de https://bit.ly/30SOb4o

ISO/IEC/IEEE. (2015). Systems and software engineering-System life cycle processes. ISO/IEC/IEEE.

Landoni, M.; Ogilvie, D. T. (2019). Convergence of innovation policies in the European aerospace industry (1960-2000). Technological Forecasting and Social Change, 147, 174-184. DOI: https://doi.org/10.1016/j.techfore.2019.07.007

Livotov, P.; Chandra-Sekaran, A. P.; Law, R.; Reay, D. (2019). Systematic innovation in process engineering: linking TRIZ and process intensification. En L. Chechurin; M. Collan (Eds.)Advances in Systematic Creativity: Creating and Managing Innovations. (38-39). Cham: Springer International Publishing. DOI: https://doi.org/10.1007/978-3-319-78075-7_3

McCurdy, H. E. (2013). Learning from history: low-cost project innovation in the U.S. National Aeronautics and Space Administration. International Journal of Project Management, 31(5), 705-711. DOI: https://doi.org/10.1016/j.ijproman.2013.02.001

Mickels, C.; Wright, C. H.; Soderquist, N.; Prokofieva, A.; Panahandehgar, S.; Uddanti, N. S.; Rajan, A. (2019). Project atlas: a mobile universal rocket engine test stand. AIAA Scitech 2019 Forum, 1-8. DOI: https://doi.org/10.2514/6.2019-1938

Moallemi, M.; Shannon, C.; Jafer, S.; Raja, A. V.; Thigpen, N. C. (2019). Building atc simulator through scenario-driven requirements engineering. AIAA Scitech 2019 Forum, 1-8. DOI: https://doi.org/10.2514/6.2019-1482

Monroy, M. F.; Ramírez, L. J. (2018). Nueva metodología para la gestión de proyectos estratégicos. Revista Científica General José María Córdova, 16(24), 157-173. DOI: https://doi.org/10.21830/19006586.362

Nandana, M. S.; Udaya, B. K.; Manjunatha, C. M. (2020). ICAF 2019-Structural Integrity in the Age of Additive Manufacturing. En Proceedings of the 30th Symposium of the International Committee on Aeronautical Fatigue. Krakow, Polonia, 2-7 de junio. DOI: https://doi.org/10.1007/978-3-030-21503-3

Ribechini, G.-L. (2014). Gestión estratégica de la innovación. Universitat Oberta de Catalunya. Recuperado de https://bit.ly/3vtExDA

Rojas, P. J. (2017). Doctrina Damasco: eje articulador de la segunda gran reforma del Ejército Nacional de Colombia. Revista Científica General José María Córdova, 15(19), 95-119. DOI: https://doi.org/10.21830/19006586.78

Salerno, M. S.; Gomes, L. A. D. V.; Silva, D. O. da; Bagno, R. B.; Freitas, S. L. T. U. (2015). Innovation processes: Which process for which project? Technovation, 35, 59-70. DOI: https://doi.org/10.1016/j.technovation.2014.07.012

Savioz, P.; Sannemann, E. (1999). The concept of the integrated innovation process. En IEEE (Ed.) Picmet ’99: Portland International Conference on Management of Engineering and Technology. Proceedings Vol-1: Book of Summaries. (Vol. 2, 137-143). Portland: IEEE. DOI: https://doi.org/10.1109/PICMET.1999.787797

Torrubiano, J. (2013). Metodología TRIZ para la creatividad e innovación. Madrid: Ernest & Young.

Wyatt, D.; Tooley, M. (2009). Aircraft Electrical and Electronic Systems. Londres: Routledge. DOI: https://doi.org/10.4324/9780080942971

Xue, R.; Baron, C.; Esteban, P.; Zhang, Q. (2014). Establishing Profiles for Systems Engineering Standards: A Great Help for Companies to Manage Their Processes. Frontiers of Engineering Management, 1(3), 297-303.

Zhu, W.; Bricogne, M.; Durupt, A.; Remy, S.; Li, B; Eynard, B. (2016). Implementations of model based definition and product lifecycle management technologies: a case study in chinese aeronautical industry. IFAC-PapersOnLine, 49(12), 485-490. DOI: https://doi.org/10.1016/j.ifacol.2016.07.664

Descargas

La descarga de datos todavía no está disponible.